

Mailman - The GNU Mailing List Management System

Copyright (C) 1998-2016 by the Free Software Foundation, Inc.

This is GNU Mailman, a mailing list management system distributed under the
terms of the GNU General Public License (GPL) version 3 or later. The name of
this software is spelled “Mailman” with a leading capital ‘M’ but with a lower
case second ‘m’. Any other spelling is incorrect.

Mailman is written in Python which is available for all platforms that Mailman
is supported on, including GNU/Linux and most other Unix-like operating
systems (e.g. Solaris, *BSD, MacOSX, etc.). Mailman is not supported on
Windows, although web and mail clients on any platform should be able to
interact with Mailman just fine.

The Mailman home page is:

http://www.list.org

and there is a community driven wiki at

http://wiki.list.org

For more information on Mailman, see the above web sites, or the
documentation provided with this software.

Table of Contents

	Mailman - The GNU Mailing List Management System
	Copyright

	Spelling

	History

	Help

	Bits and pieces

	Getting started with GNU Mailman
	Contact Us

	Requirements

	Documentation

	Testing Mailman 3
	Building for development

	Running Mailman 3
	Mailman Web UI

	The Archiver

	Release notes

	Setting up your database
	SQLite3

	PostgreSQL

	Database Migrations

	Hooking up your mail server
	Postfix
	Mailman settings

	Basic Postfix connections

	Transport maps

	Postfix documentation

	Exim
	Mailman settings

	Exim4 configuration

	Troubleshooting

	Exim 4 documentation

	Sendmail

	Notes from the PyCon 2012 Mailman Sprint
	Basic Messaging Handling Workflow

	Message Filtering

	Configuration

	Shell Commands

	User Model

	List Styles

	Set up Postorius in five minutes
	GNU Mailman 3

	mailman.client (the Python bindings for Mailman’s REST API)

	Postorius

	Start the development server

	A note for MacOS X users (and possibly others running python 2.7)

	Set up the archive ui in five minutes
	Requirements
	Get it running (under virtualenv):

	Running hyperkitty

	Developing Mailman
	Object model

	Process model

	Rules and chains

	Pipeline of handlers

	Other bits and pieces

Mailman modules

These documents are generated from the doctest suite.

	Email addresses
	Creating addresses

	Deleting addresses

	Registration and verification

	Case-preserved addresses

	Automatic responder
	Response dates

	Bounces
	Registration

	Domains
	Confirmation tokens

	Languages
	Adding languages

	Other iterations

	Clearing the known languages

	The mailing list manager
	Creating a mailing list

	Deleting a mailing list

	Retrieving a mailing list

	Iterating over all mailing lists

	Mailing lists
	Rosters

	Subscribing users

	List memberships
	Administrators

	Members

	Nonmembers

	Finding members

	All subscribers

	Subscriber type

	Moderation actions

	Changing subscriptions

	Events

	The message store
	Finding messages

	Iterating over all messages

	Deleting messages from the store

	Mailing list addresses
	Email confirmations

	The pending database

	Registration
	Register an email address

	Register a user

	Moderator requests
	Mailing list-centric

	Holding requests

	Getting requests

	Additional data

	Iterating over requests

	Deleting requests

	The user manager
	Creating users

	Deleting users

	Finding users

	Finding all members

	Creating a new user

	Users
	User data

	Basic user identification

	Users addresses

	Preferred address

	Users and preferences

	Subscriptions

	Server owners

	Alias Overview

	The command runner
	A command in the Subject

	A command in the body

	Implicit commands

	Stopping command processing

	Digesting
	Digest delivery

	The incoming runner
	Sender addresses

	Accepted messages

	Held messages

	Discarded messages

	Rejected messages

	LTMP server
	Posting address

	Sub-addresses
	Request subaddress

	Bounce processor

	Command processor

	Incoming processor

	The NNTP runner

	Outgoing runner
	Personalization

	VERP
	Forcing VERP

	VERP personalized deliveries

	VERP every once in a while

	VERP every time

	Never VERP

	REST server
	Clean up

	Moderation
	Member moderation

	Nonmembers

	Administrivia
	Non-administrivia

	Pre-approved postings
	No approval

	The message is approved

	Alternative headers

	Removal of header

	Using a pseudo-header

	MIME multipart support

	Stripping text/html parts

	Emergency

	Header matching
	List-specific header matching

	Implicit destination
	Alias patterns

	Bad aliases

	Posting loops

	Message size

	Moderation
	Member moderation

	Nonmembers

	Unregistered nonmembers

	Cross-membership checks

	Newsgroup moderation

	No Subject header

	Maximum number of recipients

	Rules
	All rules

	Rule checks

	Suspicious headers

	Truth

	Acknowledgment headers

	Message acknowledgment
	Non-member posts

	No acknowledgment requested

	Requested acknowledgments

	After delivery

	Archives

	Avoid duplicates
	Short circuiting

	Suppressing the list copy

	Cleansing headers
	Anonymous lists

	Cooking headers
	Saving the original sender

	Mailman version header

	Precedence header

	Personalization

	Message decoration
	Short circuiting

	Simple decorations

	Handling RFC 3676 ‘format=flowed’ parameters

	Decorating mixed-charset messages

	Decorating multipart messages

	Decorating other content types

	Digests
	Short circuiting

	Sending a digest

	File recipients
	Short circuiting

	Existing file

	Content filtering
	Filtering the outer content type

	Simple multipart filtering

	Collapsing multipart/alternative messages

	Conversion to plain text

	Discarding empty parts

	Passing MIME types

	Calculating recipients
	Regular delivery recipients

	Digest recipients

	Urgent messages

	NNTP Gateway

	List owner recipients

	Reply-to munging
	Reply to list

	Explicit Reply-To

	Automatic response handler
	Basic automatic responding

	Short circuiting

	Available auto-responses

	Grace periods

	RFC 2919 and 2369 headers
	Fewer headers

	List-Post header

	List-Id header

	Archive headers

	Subject prefixes
	No Subject

	Inserting a prefix

	Internationalized headers

	Prefix numbers

	Message tagger
	Scanning body lines

	Scanning sub-parts

	The outgoing handler

	Addresses
	Verifying

	The user

	User addresses

	Memberships

	Deleting

	REST server
	Credentials

	Version information

	Domains
	Individual domains

	Creating new domains

	Deleting domains

	Domain owners

	REST API helpers
	Resource paths

	Etags

	POST and PUT unpacking
	Arrays

	Mailing list configuration
	Reading a configuration

	Changing the full configuration

	Changing a partial configuration

	Sub-resources
	Simple resources

	Acceptable aliases

	Mailing lists
	Paginating over list records
	Creating lists via the API

	Apply a style at list creation time
	Deleting lists via the API

	Managing mailing list archivers

	Membership
	Subscribers
	Paginating over member records

	Owners and moderators

	Finding members

	Joining a mailing list

	Leaving a mailing list

	Changing delivery address

	Post Moderation
	Viewing the list of held messages

	Disposing of held messages

	Preferences
	Changing preferences

	Deleting preferences

	Combined member preferences

	System preferences

	Queues

	Subscription moderation
	Viewing subscription requests

	Viewing individual requests

	Disposing of subscription requests

	System configuration

	Users
	Paginating over user records
	Creating users

	Providing a display name

	Providing passwords
	Updating users

	Deleting users via the API

	User addresses

	Verifying passwords

	Server owners

	Chains
	The Discard chain

	The Reject chain

	The Hold Chain

	The Accept chain

	Run-time chains

	Runners
	Basic architecture

	The switchboard
	Enqueing and dequeing

	Iterating over files

	Recovering files

	Clean up

	Queue slices

	Banning email addresses
	Specific bans

	Global bans

	Regular expression bans

	Adding and removing bans

	Bounces
	Bounces, or message rejection

	Hooks
	Pre-hook

	Post-hook

	Running both hooks

	Application level list life cycle
	Creating a list with owners

	Deleting a list

	Messages
	User notifications

	Application level moderation
	Message moderation
	Holding messages

	Disposing of messages

	Forwarding the message

	Holding subscription requests
	Disposing of membership change requests

	Holding unsubscription requests

	Notifications
	Membership change requests

	Membership changes

	Welcome messages

	Goodbye messages

	Pipelines
	Processing a message

	Subscription services
	Listing members

	Finding members

	Removing members

	System versions

	List styles
	Registering styles

	Unregistering styles

	Apply styles at list creation

	Archivers
	Sending the message to the archiver

	The Mail-Archive.com

	MHonArc

	SMTP authentication

	Standard bulk delivery
	Chunking recipients

	Bulk delivery

	Delivery headers

	Delivery failures

	MTA connections
	Sessions per connection

	No maximum

	Development mode

	Personalized decoration
	Decorations

	Decorate only once

	Fully personalized delivery
	No personalization

	To header

	Standard VERP delivery
	No recipients

	Individual copy

	Mailman runner control

	Generating aliases

	Display configuration values

	Starting and stopping Mailman
	Set up

	Starting

	Stopping

	Command line list creation
	Setting the owner

	Setting the language

	Notifications

	The ‘echo’ command

	The ‘end’ command

	Email command help

	Importing list data

	Getting information

	Command line message injection
	Standard input

	Metadata

	Errors

	Command line list display
	Names

	Descriptions

	Less verbosity

	Specific domain

	Advertised lists

	Managing members
	Listing members
	Filtering on delivery mode

	Filtering on delivery status

	Adding members

	Displaying members

	Membership changes via email
	Joining a mailing list
	No address to join

	Joining the sender

	Joining a second list

	Leaving a mailing list

	Confirmations

	Dumping queue files
	Pretty printing

	Command line list removal

	Getting status

	Unshunt
	Return to the original queue

	Discarding all shunted messages

	Printing the version

	Operating on mailing lists
	Getting detailed help

	Running a command

	Multiple lists

	Error handling

	IPython

	Mailman - The GNU Mailing List Management System
	3.0.4 – “Show Don’t Tell”

	3.0.3 – “Show Don’t Tell”
	Bugs

	3.0.2 – “Show Don’t Tell”
	Bugs

	Interfaces

	REST

	3.0.1 – “Show Don’t Tell”
	Bugs

	3.0.0 – “Show Don’t Tell”
	Architecture

	Bugs

	Configuration

	Documentation

	REST

	3.0 beta 5 – “Carve Away The Stone”
	Bugs

	Commands

	Configuration

	Database

	Development

	Interfaces

	REST

	3.0 beta 4 – “Time and Motion”
	Development

	REST

	Commands

	Configuration

	Database

	Bugs

	3.0 beta 3 – “Here Again”
	Compatibility

	REST

	Configuration

	Database

	Interfaces

	Commands

	Other

	Bugs

	3.0 beta 2 – “Freeze”
	Architecture

	Database

	REST

	Configuration

	Documentation

	Bug fixes

	3.0 beta 1 – “The Twilight Zone”
	Architecture

	Database

	REST

	Interfaces

	Commands

	Bug fixes

	3.0 alpha 8 – “Where’s My Thing?”
	Architecture

	REST

	Commands

	Documentation

	Testing

	Other bugs and changes

	3.0 alpha 7 – “Mission”
	Architecture

	Configuration

	Commands

	REST

	Build

	Bugs fixed

	3.0 alpha 6 – “Cut to the Chase”
	Commands

	Configuration

	REST

	Architecture

	Miscellaneous

	3.0 alpha 5 – “Distant Early Warning”
	REST

	Commands

	Configuration

	3.0 alpha 4 – “Vital Signs”
	Commands

	Architecture

	Configuration

	3.0 alpha 3 – “Working Man”
	Configuration

	Architecture

	Other changes

	Building and installation

	3.0 alpha 2 – “Grand Designs”
	Licensing

	Bug fixes

	Architecture

	Other changes

	Installation

	3.0 alpha 1 – “Leave That Thing Alone”
	User visible changes

	Configuration

	Architecture

	Internationalization Big Changes

	New Features

	Command line scripts

	Bug fixes and other patches

	GNU Mailman Coding Style Guide
	Python coding style guide for GNU Mailman

	GNU Mailman Acknowledgments
	Governance

	Core Developers

	Copyright Assignees

	Special Thanks

Indices and tables

	Index

	Module Index

	Search Page

Mailman - The GNU Mailing List Management System

This is GNU Mailman [http://www.list.org], a mailing list management system distributed under the
terms of the GNU General Public License [http://www.gnu.org/licenses/gpl.txt] (GPL) version 3 or later.

Mailman is written in Python [http://www.python.org], a free object-oriented programming language.
Python is available for all platforms that Mailman is supported on, which
includes GNU/Linux and most other Unix-like operating systems (e.g. Solaris,
*BSD, MacOSX, etc.). Mailman is not supported on Windows, although web and
mail clients on any platform should be able to interact with Mailman just
fine.

Learn more about GNU Mailman in the Getting Started documentation.

Copyright

Copyright 1998-2016 by the Free Software Foundation, Inc.

This file is part of GNU Mailman.

GNU Mailman is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

GNU Mailman is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
GNU Mailman. If not, see <http://www.gnu.org/licenses/>.

Spelling

The name of this software is spelled Mailman with a leading capital M
but with a lower case second m. Any other spelling is incorrect. Its full
name is GNU Mailman but is often referred colloquially as Mailman.

History

Mailman was originally developed by John Viega. Subsequent development
(through version 1.0b3) was by Ken Manheimer. Further work towards the 1.0
final release was a group effort, with the core contributors being: Barry
Warsaw, Ken Manheimer, Scott Cotton, Harald Meland, and John Viega. Version
1.0 and beyond have been primarily maintained by Barry Warsaw with
contributions from many; see the ACKNOWLEDGMENTS file for details. Jeremy
Hylton helped considerably with the Pipermail code in Mailman 2.0. Mailman
2.1 is primarily maintained by Mark Sapiro, with previous help by Tokio
Kikuchi. Barry Warsaw is the lead developer on Mailman 3.

Help

The Mailman home page is:

http://www.list.org

with mirrors at:

	http://www.gnu.org/software/mailman

	http://mailman.sf.net

The community driven wiki (including the FAQ [http://wiki.list.org/display/DOC/Frequently+Asked+Questions]) is at:

http://wiki.list.org

Other help resources, such as on-line documentation, links to the mailing
lists and archives, etc., are available at:

http://www.list.org/help.html

Bits and pieces

Mailman 3 is really a suite of 5 projects:

	Core - the core message processing and delivery system, exposing a REST API
for administrative control. Requires Python 3.4 [https://www.python.org/downloads/release/python-342/] or newer.

	Postorius - the new web user interfaces built on Django [https://www.djangoproject.com/].

	HyperKitty - the new archiver, also built on Django [https://www.djangoproject.com/].

	mailman.client - a Python binding to the core’s REST API. Compatible with
both Python 2 and Python 3.

	Bundler - a convenient installer.

Getting started with GNU Mailman

Copyright (C) 2008-2016 by the Free Software Foundation, Inc.

Contact Us

Contributions of code, problem reports, and feature requests are welcome.
Please submit bug reports on the Mailman bug tracker at
https://gitlab.com/mailman/mailman/issues (you need to have a login on Gitlab to
do so). You can also send email to the mailman-developers@python.org mailing
list, or ask on IRC channel #mailman on Freenode.

Requirements

For the Core, Python 3.4 or newer is required. It can either be the default
‘python3’ on your $PATH or it can be accessible via the python3.4
binary. If your operating system does not include Python, see
http://www.python.org for information about downloading installers (where
available) and installing it from source (when necessary or preferred).
Python 2 is not supported.

You may need some additional dependencies, which are either available from
your OS vendor, or can be downloaded automatically from the Python
Cheeseshop [http://pypi.python.org/pypi].

Documentation

The documentation for Mailman 3 is distributed throughout the sources. The
core documentation (such as this file) is found in the src/mailman/docs
directory, but much of the documentation is in module-specific places. A
prebuilt HTML version of Mailman 3 documentation [http://www.pythonhosted.org/mailman/] is available at
pythonhosted.org, as is Postorius documentation [http://www.pythonhosted.org/postorius/]. HyperKitty
documentation [https://hyperkitty.readthedocs.org/en/latest/development.html] is available at ReadTheDocs.

The Development Setup Guide [https://fedorahosted.org/hyperkitty/wiki/DevelopmentSetupGuide] is a recent step-by-step explanation of
how to set up a complete Mailman 3 system including the Mailman 3 core
and basic client API, Postorius, and HyperKitty.

Testing Mailman 3

To run the Mailman test suite, just use the tox [https://testrun.org/tox/latest/] command:

$ tox

tox creates a virtual environment (virtualenv) for you, installs all the
dependencies into that virtualenv, and runs the test suite from that
virtualenv. By default it does not use the –system-site-packages so it
downloads everything from the Cheeseshop.

You do have access to the virtualenv, and you can use this to run individual
tests, e.g.:

$.tox/py34/bin/python -m nose2 -vv -P user

Use .tox/py34/bin/python -m nose2 –help for more options.

If you want to run the full test suite against the PostgreSQL database, set
the database up as described in Setting up your database, then create a postgres.cfg
file any where you want. This postgres.cfg file will contain the
[database] section for PostgreSQL, e.g.:

[database]
class: mailman.database.postgresql.PostgreSQLDatabase
url: postgres://myuser:mypassword@mypghost/mailman

Then run the test suite like so:

$ MAILMAN_EXTRA_TESTING_CFG=/path/to/postgres.cfg tox -e pg

If you want to run an individual test against PostgreSQL, you would do it like
so:

$ MAILMAN_EXTRA_TESTING_CFG=/path/to/postgres.cfg .tox/pg/bin/python -m nose2 -vv -P user

Building for development

To build Mailman for development purposes, you can create a virtual
environment outside of tox. You need to have the virtualenv [http://www.virtualenv.org/en/latest/] program
installed, or you can use Python 3’s built-in pyvenv [https://docs.python.org/3/library/venv.html] command.

First, create a virtual environment (venv). The directory you install the
venv into is up to you, but for purposes of this document, we’ll install it
into /tmp/mm3:

% pyvenv /tmp/mm3

Now, activate the virtual environment and set it up for development:

% source /tmp/mm3/bin/activate
% python setup.py develop

Sit back and have some Kombucha while you wait for everything to download and
install.

Build the online docs by running:

% python setup.py build_sphinx

If setup.py fails to recognize the build_sphinx command, then
just install Sphinx in your virtualenv:

% pip install sphinx

This will automatically add the build_sphinx command to
setup.py, so just re-run the command.

Then visit:

build/sphinx/html/index.html

in your browser to start reading the documentation. Or you can just read the
doctests by looking in all the ‘doc’ directories under the ‘mailman’ package.
Doctests are documentation first, so they should give you a pretty good idea
how various components of Mailman 3 work.

Once everything is downloaded and installed, you can initialize Mailman and
get a display of the basic configuration settings by running:

$ mailman info -v

Running Mailman 3

What, you actually want to run Mailman 3? Oh well, if you insist. You will
need to set up a configuration file to override the defaults and set things up
for your environment. Mailman is configured using an “ini”-style
configuration system.

src/mailman/config/schema.cfg defines the ini-file schema and contains
documentation for every section and configuration variable. Sections that end
in .template or .master are templates that must be overridden in actual
configuration files. There is a default configuration file that defines these
basic overrides in src/mailman/config/mailman.cfg. Your own configuration
file will override those.

By default, all runtime files are put under a var directory in the current
working directory.

Mailman searches for its configuration file using the following search path.
The first existing file found wins.

	-C config command line option

	$MAILMAN_CONFIG_FILE environment variable

	./mailman.cfg

	~/.mailman.cfg

	/etc/mailman.cfg

	argv[0]/../../etc/mailman.cfg

Run the mailman info command to see which configuration file Mailman will
use, and where it will put its database file. The first time you run this,
Mailman will also create any necessary run-time directories and log files.

Try mailman --help for more details. You can use the commands
mailman start to start the runner subprocess daemons, and of course
mailman stop to stop them.

Postorius, a web UI for administration and subscriber settings, is being
developed as a separate, Django-based project. For now, the most flexible
means of configuration is via the command line and REST API.

Mailman Web UI

The Mailman 3 web UI, called Postorius, interfaces to core Mailman engine
via the REST client API. It is expected that this architecture will make it
possible for users with other needs to adapt the web UI, or even replace it
entirely, with a reasonable amount of effort. However, as a core feature of
Mailman, the web UI will emphasize usability over modularity at first, so most
users should use the web UI described here.

The Archiver

In Mailman 3, the archivers are decoupled from the core engine. Instead,
Mailman 3 provides a simple, standard interface for third-party archiving tools
and services. For this reason, Mailman 3 defines a formal interface to insert
messages into any of a number of configured archivers, using whatever protocol
is appropriate for that archiver. Summary, search, and retrieval of archived
posts are handled by a separate application.

A new archive UI called Hyperkitty [https://gitlab.com/mailman/hyperkitty], based on the notmuch mail indexer [http://notmuchmail.org]
and Django [http://djangoproject.org/], was prototyped at the PyCon 2012 sprint by Toshio Kuratomi.
The Hyperkitty archiver is very loosely coupled to Mailman 3 core. In fact,
any email application that speaks LMTP or SMTP will be able to use Hyperkitty.

Release notes

Mailman 3 is a fully rewritten code base. The developers believe it has
sufficient functionality to provide full mailing list services. It should be
ready for production use by experienced system developers, but it may not be
easy to install or run by novices.

We expect it to be possible to migrate Mailman 2.1 mailing lists to Mailman 3,
but sufficient caution, backups, and testing should be performed.

We expect it to be possible to run Mailman 3 and Mailman 2.1 together on the
same systems, but you may need to be quite experienced with configuring your
mail server and web infrastructure.

Mailman 3 may have bugs.

Mailman 3 is not yet feature complete with Mailman 2.1.

The documentation here describes the Mailman Core in great detail.
Postorius, Hyperkitty, mailman.client, and the bundler are described and
developed elsewhere.

More release notes are maintained on the Mailman wiki [http://wiki.list.org/Mailman3].

Setting up your database

Mailman uses the SQLAlchemy [http://www.sqlalchemy.org/] ORM to provide persistence of data in a
relational database. By default, Mailman uses Python’s built-in SQLite3 [http://docs.python.org/library/sqlite3.html]
database, however, SQLAlchemy is compatible with PostgreSQL [http://www.postgresql.org/] and MySQL, among
possibly others.

Currently, Mailman is known to work with either the default SQLite3 database,
or PostgreSQL. (Volunteers to port it to other databases are welcome!). If
you want to use SQLite3, you generally don’t need to change anything, but if
you want Mailman to use PostgreSQL, you’ll need to set that up first, and then
change a configuration variable in your /etc/mailman.cfg file.

Two configuration variables control which database Mailman uses. The first
names the class implementing the database interface. The second names the URL
for connecting to the database. Both variables live in the [database]
section of the configuration file.

SQLite3

As mentioned, if you want to use SQLite3 in the default configuration, you
generally don’t need to change anything. However, if you want to change where
the SQLite3 database is stored, you can change the url variable in the
[database] section. By default, the database is stored in the data
directory in the mailman.db file. Here’s how you’d force Mailman to
store its database in /var/lib/mailman/sqlite.db file:

[database]
url: sqlite:////var/lib/mailman/sqlite.db

PostgreSQL

First, you need to configure PostgreSQL itself. This Ubuntu article [https://help.ubuntu.com/community/PostgreSQL] may
help. Let’s say you create the mailman database in PostgreSQL via:

$ sudo -u postgres createdb -O $USER mailman

You would then need to set both the class and url variables in
mailman.cfg like so:

[database]
class: mailman.database.postgresql.PostgreSQLDatabase
url: postgres://myuser:mypassword@mypghost/mailman

That should be it.

If you have any problems, you may need to delete the database and re-create
it:

$ sudo -u postgres dropdb mailman
$ sudo -u postgres createdb -O myuser mailman

My thanks to Stephen A. Goss for his contribution of PostgreSQL support.

Database Migrations

Mailman uses Alembic [https://alembic.readthedocs.org/en/latest/] to manage database migrations. Let’s say you change
something in the models, what steps are needed to reflect that change in the
database schema? You need to create and enter a virtual environment, install
Mailman into that, and then run the alembic command. For example:

$ virtualenv -p python3 /tmp/mm3
$ source /tmp/mm3/bin/activate
$ python setup.py develop
$ alembic -c src/mailman/config/alembic.cfg revision --autogenerate -m
 "<migration_name>"

This would create a new migration which would automatically be migrated to the
database on the next run of Mailman. Note that the database needs to be in
the older state so that Alembic can track the changes in the schema and
autogenerate a migration. If you don’t have the database in the older state
you can remove the –autogenerate flag in the above command. It would then
create a new empty revision which you can edit manually to reflect your
changes in the database schema.

People upgrading Mailman from previous versions need not do anything manually,
as soon as a new migration is added in the sources, it will be automatically
reflected in the schema on first-run post-update.

Note: When auto-generating migrations using Alembic, be sure to check
the created migration before adding it to the version control. You will have
to manually change some of the special data types defined in
mailman.database.types. For example, mailman.database.types.Enum()
needs to be changed to sa.Integer(), as the Enum type stores just the
integer in the database. A more complex migration would be needed for
UUID depending upon the database layer to be used.

Hooking up your mail server

Mailman needs to communicate with your MTA (mail transport agent
or mail server, the software which handles sending mail across the
Internet), both to accept incoming mail and to deliver outgoing mail.
Mailman itself never delivers messages to the end user. It sends them
to its immediate upstream MTA, which delivers them. In the same way,
Mailman never receives mail directly. Mail from outside always comes
via the MTA.

Mailman accepts incoming messages from the MTA using the Local Mail
Transfer Protocol [http://en.wikipedia.org/wiki/Local_Mail_Transfer_Protocol] (LMTP [http://www.faqs.org/rfcs/rfc2033.html]) interface. Mailman can use other incoming
transports, but LMTP is much more efficient than spawning a process
just to do the delivery. Most open source MTAs support LMTP for local
delivery. If yours doesn’t, and you need to use a different
interface, please ask on the mailing list or on IRC.

Mailman passes all outgoing messages to the MTA using the Simple Mail
Transfer Protocol [http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol] (SMTP [http://www.faqs.org/rfcs/rfc5321.html]).

Cooperation between Mailman and the MTA requires some configuration of
both. MTA configuration differs for each of the available MTAs, and
there is a section for each one. Instructions for Postfix and Exim (v4)
are given below. We would really appreciate a contribution of a
configuration for Sendmail, and welcome information about other popular
open source mail servers.

Configuring Mailman to communicate with the MTA is straightforward,
and basically the same for all MTAs. In your mailman.cfg file,
add (or edit) a section like the following:

[mta]
incoming: mailman.mta.postfix.LMTP
outgoing: mailman.mta.deliver.deliver
lmtp_host: 127.0.0.1
lmtp_port: 8024
smtp_host: localhost
smtp_port: 25
configuration: python:mailman.config.postfix

This configuration is for a system where Mailman and the MTA are on
the same host.

Note that the modules that configure the communication protocol (especially
incoming) are full-fledged Python modules, and may use these configuration
parameters to automatically configure the MTA to recognize the list addresses
and other attributes of the communication channel. This is why some
constraints on the format of attributes arise (e.g., lmtp_host), even
though Mailman itself has no problem with them.

The incoming and outgoing parameters identify the Python objects used
to communicate with the MTA. The python: scheme indicates that the paths
should be a dotted Python module specification. The deliver module used
in outgoing should be satisfactory for most MTAs. The postfix module
in incoming is specific to the Postfix MTA. See the section for your MTA
below for details on these parameters.

lmtp_host and lmtp_port are parameters which are used by
Mailman, but also will be passed to the MTA to identify the Mailman
host. The “same host” case is special; some MTAs (including Postfix)
do not recognize “localhost”, and need the numerical IP address. If
they are on different hosts, lmtp_host should be set to the domain
name or IP address of the Mailman host. lmtp_port is fairly
arbitrary (there is no standard port for LMTP). Use any port
convenient for your site. “8024” is as good as any, unless another
service is using it.

smtp_host and smtp_port are parameters used to identify the
MTA to Mailman. If the MTA and Mailman are on separate hosts,
smtp_host should be set to the domain name or IP address of the
MTA host. smtp_port will almost always be 25, which is the
standard port for SMTP. (Some special site configurations set it to a
different port. If you need this, you probably already know that,
know why, and what to do, too!)

Mailman also provides many other configuration variables that you can
use to tweak performance for your operating environment. See the
src/mailman/config/schema.cfg file for details.

Postfix

Postfix [http://www.postfix.org] is an open source mail server by Wietse Venema.

Mailman settings

You need to tell Mailman that you are using the Postfix mail server. In your
mailman.cfg file, add the following section:

[mta]
incoming: mailman.mta.postfix.LMTP
outgoing: mailman.mta.deliver.deliver
lmtp_host: mail.example.com
lmtp_port: 8024
smtp_host: mail.example.com
smtp_port: 25

Some of these settings are already the default, so take a look at Mailman’s
src/mailman/config/schema.cfg file for details. You’ll need to change the
lmtp_host and smtp_host to the appropriate host names of course.
Generally, Postfix will listen for incoming SMTP connections on port 25.
Postfix will deliver via LMTP over port 24 by default, however if you are not
running Mailman as root, you’ll need to change this to a higher port number,
as shown above.

Basic Postfix connections

There are several ways to hook Postfix up to Mailman, so here are the simplest
instructions. The following settings should be added to Postfix’s main.cf
file.

Mailman supports a technique called Variable Envelope Return Path [http://en.wikipedia.org/wiki/Variable_envelope_return_path] (VERP) to
disambiguate and accurately record bounces. By default Mailman’s VERP
delimiter is the + sign, so adding this setting allows Postfix to properly
handle Mailman’s VERP’d messages:

Support the default VERP delimiter.
recipient_delimiter = +

In older versions of Postfix, unknown local recipients generated a temporary
failure. It’s much better (and the default in newer Postfix releases) to
treat them as permanent failures. You can add this to your main.cf file
if needed (use the postconf [http://www.postfix.org/postconf.1.html] command to check the defaults):

unknown_local_recipient_reject_code = 550

While generally not necessary if you set recipient_delimiter as described
above, it’s better for Postfix to not treat owner- and -request
addresses specially:

owner_request_special = no

Transport maps

By default, Mailman works well with Postfix transport maps as a way to deliver
incoming messages to Mailman’s LMTP server. Mailman will automatically write
the correct transport map when its mailman aliases command is run, or
whenever a mailing list is created or removed via other commands. To connect
Postfix to Mailman’s LMTP server, add the following to Postfix’s main.cf
file:

transport_maps =
 hash:/path-to-mailman/var/data/postfix_lmtp
local_recipient_maps =
 hash:/path-to-mailman/var/data/postfix_lmtp
relay_domains =
 hash:/path-to-mailman/var/data/postfix_domains

where path-to-mailman is replaced with the actual path that you’re running
Mailman from. Setting local_recipient_maps as well as transport_maps
allows Postfix to properly reject all messages destined for non-existent local
users. Setting relay_domains [http://www.postfix.org/postconf.5.html#relay_domains] means Postfix will start to accept mail for
newly added domains even if they are not part of mydestination [http://www.postfix.org/postconf.5.html#mydestination].

Note that if you are not using virtual domains, then relay_domains [http://www.postfix.org/postconf.5.html#relay_domains] isn’t
strictly needed (but it is harmless). All you need to do in this scenario is
to make sure that Postfix accepts mail for your one domain, normally by
including it in mydestination.

Postfix documentation

For more information regarding how to configure Postfix, please see
the Postfix documentation at:

Exim

Exim 4 [http://www.exim.org/] is an MTA maintained by the University of Cambridge [http://www.cam.ac.uk/] and
distributed by most open source OS distributions.

Mailman settings

Add or edit a stanza like this in mailman.cfg:

[mta]
For all Exim4 installations.
incoming: mailman.mta.exim4.LMTP
outgoing: mailman.mta.deliver.deliver
Typical single host with MTA and Mailman configuration.
Adjust to your system's configuration.
Exim happily works with the "localhost" alias rather than IP address.
lmtp_host: localhost
smtp_host: localhost
Mailman should not be run as root.
Use any convenient port > 1024. 8024 is a convention, but can be
changed if there is a conflict with other software using that port.
lmtp_port: 8024
smtp_port rarely needs to be set.
smtp_port: 25
Exim4-specific configuration parameter defaults. Currently empty.
configuration: python:mailman.config.exim4

For further information about these settings, see
mailman/config/schema.cfg.

Exim4 configuration

The configuration presented below is mostly boilerplate that allows Exim to
automatically discover your list addresses, and route both posts and
administrative messages to the right Mailman services. For this reason, the
mailman.mta.exim4 module ends up with all methods being no-ops.

This configuration is field-tested in a Debian “conf.d”-style Exim
installation, with multiple configuration files that are assembled by a
Debian-specific script. If your Exim v4 installation is structured
differently, ignore the comments indicating location in the Debian
installation.

/etc/exim4/conf.d/main/25_mm3_macros
The colon-separated list of domains served by Mailman.
domainlist mm_domains=list.example.net

MM3_LMTP_PORT=8024

Assuming a typical source installation in /usr/local, with
links to the Mailman bin directory and so on from MM3_HOME.
MM3_HOME=/usr/local/var/mailman
MM3_UID=list
MM3_GID=list

##
The configuration below is boilerplate:
you should not need to change it.

The path to the list receipt (used as the required file when
matching list addresses)
MM3_LISTCHK=MM3_HOME/lists/${local_part}@${domain}

/etc/exim4/conf.d/router/455_mm3_router
mailman3_router:
 driver = accept
 domains = +mm_domains
 require_files = MM3_LISTCHK
 local_part_suffix_optional
 local_part_suffix = -admin : \
 -bounces : -bounces+* : \
 -confirm : -confirm+* : \
 -join : -leave : \
 -owner : -request : \
 -subscribe : -unsubscribe
 transport = mailman3_transport

/etc/exim4/conf.d/transport/55_mm3_transport
mailman3_transport:
 driver = smtp
 protocol = lmtp
 allow_localhost
 hosts = localhost
 port = MM3_LMTP_PORT

Troubleshooting

The most likely causes of failure to deliver to Mailman are typos in the
configuration, and errors in the MM3_HOME macro or the mm_domains
list. Mismatches in the LMTP port could be a cause. Finally, Exim’s router
configuration is order-sensitive. Especially if you are being tricky and
supporting Mailman 2 and Mailman 3 at the same time, you could have one shadow
the other.

Exim 4 documentation

There is copious documentation for Exim [http://www.exim.org/docs.html]. The parts most relevant to
configuring communication with Mailman 3 are the chapters on the accept
router [http://www.exim.org/exim-html-current/doc/html/spec_html/ch-the_accept_router.html] and the LMTP transport [http://www.exim.org/exim-html-current/doc/html/spec_html/ch-the_lmtp_transport.html]. Unless you are already familiar
with Exim configuration, you probably want to start with the chapter on
how Exim receives and delivers mail.

Sendmail

The core Mailman developers generally do not use Sendmail, so experience is
limited. Any and all contributions are welcome! The follow information from
a post by Gary Algier <gaa@ulticom.com> may be useful as a starting point,
although it describes Mailman 2:

I have it working fine. I recently replaced a very old implementation
of sendmail and Mailman 2 on Solaris with a new one on CentOS 6. When I
did so, I used the POSTFIX_ALIAS_CMD mechanism to automatically process
the aliases. See:

https://mail.python.org/pipermail/mailman-users/2004-June/037518.html

In mm_cfg.py:

MTA='Postfix'
POSTFIX_ALIAS_CMD = '/usr/bin/sudo /etc/mail/import-mailman-aliases'

/etc/mail/import-mailman-aliases contains:

#! /bin/sh
/bin/cp /etc/mailman/aliases /etc/mail/mailman.aliases
/usr/bin/newaliases

In /etc/sudoers.d/mailman:

Cmnd_Alias IMPORT_MAILMAN_ALIASES = /etc/mail/import-mailman-aliases
apache ALL= NOPASSWD: IMPORT_MAILMAN_ALIASES
mailman ALL= NOPASSWD: IMPORT_MAILMAN_ALIASES
Defaults!IMPORT_MAILMAN_ALIASES !requiretty

In the sendmail.mc file I changed:

define(`ALIAS_FILE', `/etc/aliases')dnl

to:

define(`ALIAS_FILE', `/etc/aliases,/etc/mail/mailman.aliases')dnl

so that the Mailman aliases would be in a separate file.

The main issue here is that Mailman 2 expects to receive messages from
the MTA via pipes, whereas Mailman 3 uses LMTP exclusively. Recent
Sendmail does support LMTP, so it’s a matter of configuring a stock
Sendmail. But rather than using aliases, it needs to be configured to
relay to the LMTP port of Mailman.

Notes from the PyCon 2012 Mailman Sprint

These are notes from the Mailman sprint at PyCon 2012. They are not
terribly well organized, nor fully fleshed out. Please edit and push
branches to `Gitlab`_ or post patches to
the Mailman bug tracker at <https://gitlab.com/mailman/mailman/issues>.

The intent of this document is to provide a view of Mailman 3’s workflow and
structures from “eight miles high”.

Basic Messaging Handling Workflow

Mailman accepts a message via the LMTP protocol (RFC 2033). It implements a
simple LMTP server internally based on the LMTP server provided in the Python
standard library. The LMTP server’s responsibility is to parse the message
into a tuple (mlist, msg, msgdata). If the parse fails (including
messages which Mailman considers to be invalid due to lack of Message-Id as
strongly recommended by RFC 2822 and RFC 5322), the message will be rejected,
otherwise the parsed message and metadata dictionary are pickled, and the
resulting message pickle added to one of the in, command, or bounce
processing queues.

[image: digraph msgflow { rankdir = LR; node [shape=box, color=lightblue, style=filled]; msg [shape=ellipse, color=black, fillcolor=white]; lmtpd [label="LMTP\nSERVER"]; rts [label="Return\nto Sender"]; msg -> MTA [label="SMTP"]; MTA -> lmtpd [label="LMTP"]; lmtpd -> MTA [label="reject"]; lmtpd -> IN -> PIPELINE [label=".pck"]; IN -> rts; lmtpd -> BOUNCES [label=".pck"]; lmtpd -> COMMAND [label=".pck"]; }]

The in queue is processed by filter chains (explained below) to determine
whether the post (or administrative request) will be processed. If not
allowed, the message pickle is discarded, rejected (returned to sender), or
held (saved for moderator approval – not shown). Otherwise the message is
added to the pipeline (i.e. posting) queue. (Note that rejecting at this
stage is not equivalent to rejecting during LMTP processing. This issue is
currently unresolved.)

Each of the command, bounce, and pipeline queues is processed by a
pipeline of handlers as in Mailman 2’s pipeline. (Some functions such as
spam detection that were handled in the Mailman 2 pipeline are now in the
filter chains.)

Handlers may copy messages to other queues (e.g., archive), and eventually
posted messages for distribution to the list membership end up in the out
queue for injection into the MTA.

The virgin queue (not depicted above) is a special queue for messages created
by Mailman.

[image: digraph pipeline { node [shape=box, style=rounded, group=0] { "MIME\ndelete" -> "cleanse headers" -> "add headers" -> "calculate\nrecipients" -> "to digest" -> "to archive" -> "to outgoing" } node [shape=box, color=lightblue, style=filled, group=1] { rank=same; PIPELINE -> "MIME\ndelete" } { rank=same; "to digest" -> DIGEST } { rank=same; "to archive" -> ARCHIVE } { rank=same; "to outgoing" -> OUT } }]

Message Filtering

Once a message has been classified as a post or administrivia, rules are
applied to determine whether the message should be distributed or acted on.
Rules include things like “if the message’s sender is a non-member, hold it
for moderation”, or “if the message contains an Approved header with a valid
password, allow it to be posted”. A rule may also make no decision, in which
case message processing is passed on to the next rule in the filter chain.
The default set of rules looks something like this:

Configuration

Mailman 3 uses lazr.config [http://pypi.python.org/pypi/lazr.config], essentially an “ini”-style configuration format.

Each Runner’s configuration object knows whether it should be started
when the Mailman daemon starts, and what queue the Runner manages.

Shell Commands

mailman: This is an ubercommand, with subcommands for all the various things
admins might want to do, similar to Mailman 2’s mailmanctl, but with more
functionality.

bin/master: The runner manager: starts, watches, stops the runner
daemons.

bin/runner: Individual runner daemons. Each instance is configured with
arguments specified on the command line.

User Model

A user represents a person. A user has an id and a display
name, and optionally a list of linked addresses.

Each address is a separate object, linked to no more than one user.

A list member associates an address with a mailing list. Each list member
has a id, a mailing list name, an address (which may be None, representing
the user’s preferred address), a list of preferences, and a role such as
“owner” or “moderator”. Roles are used to determine what kinds of mail the
user receives via that membership. Owners will receive mail to
list-owner, but not posts and moderation traffic, for example. A user with
multiple roles on a single list will therefore have multiple memberships in
that list, one for each role.

Roles are implemented by “magical, invisible” rosters which are objects
representing queries on the membership database.

List Styles

Each list style is a named object. Its attributes are functions used to
apply the relevant style settings to the mailing list at creation time.
Since these are functions, they can be composed in various ways, to create
substyles, etc.

Set up Postorius in five minutes

This is a quick guide for setting up a development environment to work on
Mailman 3’s web UI, called Postorius. If all goes as planned, you should be
done within 5 minutes. This has been tested on Ubuntu 11.04.

In order to download the components necessary you need to have the Git [http://git-scm.com]
version control system installed on your system. Mailman requires Python 3.4,
while mailman.client needs at least Python version 2.6.

It’s probably a good idea to set up a virtual Python environment using
virtualenv [http://pypi.python.org/pypi/virtualenv]. Here is a brief HOWTO. You would need two separate virtual
environment one using Python version 2.6 or 2.7 (for Postorius and
mailman.client) and other using Python version 3.4 (for Mailman core).

GNU Mailman 3

First download the latest revision of Mailman 3 from Gitlab.

$(py3) git clone git@gitlab.com:mailman/mailman.git

Install the Core:

$(py3) cd mailman
$(py3) python setup.py develop

If you get no errors you can now start Mailman:

$(py3) mailman start
$(py3) cd ..

At this point Mailman will not send nor receive any real emails. But that’s
fine as long as you only want to work on the components related to the REST
client or the web ui.

mailman.client (the Python bindings for Mailman’s REST API)

Now you should switch to the virtual environment running Python version 2.6 or
2.7. Download the client from Gitlab:

$(py2) git clone git@gitlab.com:mailman/mailmanclient.git

Install in development mode to be able to change the code without working
directly on the PYTHONPATH.

$(py2) cd mailman.client
$(py2) python setup.py develop
$(py2) cd ..

Postorius

$(py2) git clone git@gitlab.com:mailman/postorius.git
$(py2) cd postorius
$(py2) python setup.py develop

Start the development server

Postorius is a Django app which can be used with any Django project. We have
a project already developed which you can set up like this:

$(py2) git clone git@github.com:mailman/postorius_standalone.git
$(py2) cd postorius_standalone
$(py2) python manage.py syncdb
$(py2) python manage.py runserver

The last command will start the dev server on http://localhost:8000.

A note for MacOS X users (and possibly others running python 2.7)

Note: These paragraphs are struck-through on the Mailman wiki.

On an OS X 10.7 (Lion) system, some of these steps needed to be modified to
use python2.6 instead of python. (In particular, bzr is known to behave badly
when used python2.7 on OS X 10.7 at the moment – hopefully this will be fixed
and no longer an issue soon.)

You will need to install the latest version of XCode on MacOS 10.7, which is
available for free from the App Store. If you had a previous version of XCode
installed when you upgraded to 10.7, it will no longer work and will not have
automatically been upgraded, so be prepared to install again. Once you have
it installed from the App Store, you will still need to go run the installer
from /Applications to complete the installation.

Set up the archive ui in five minutes

Note

This document is way out of date. If you have access to the Web,
the most recent explanation of setting up a full Mailman 3 system,
including Postorius and HyperKitty, is the Development Setup Guide [https://fedorahosted.org/hyperkitty/wiki/DevelopmentSetupGuide] at
FedoraHosted [https://fedorahosted.org/]. If you must work offline, this document may be of some
use, but be careful.

The hyperkitty [https://fedorahosted.org/hyperkitty/] application aims at providing an interface to visualize and
explore Mailman archives.

This is a Django [http://djangoproject.org/] project.

Requirements

	A mail archive in maildir format [http://en.wikipedia.org/wiki/Maildir] (no, you don’t need a running Mailman
3!) Eventually hyperkitty will support mbox format [http://en.wikipedia.org/wiki/Mbox] for backward
compatibility with Pipermail, and zipped maildirs seem like a good idea
to save space. Beware: Although you’d think that we would be able to
manipulate the venerable mbox format safely and efficiently, that doesn’t
seem to be the case. Maildir archives are strongly preferred, because
they are more robust to program bugs (whether in Mailman, hyperkitty, or in
the originating MUA!)

	Django is the web framework that supports the UI.

	bunch [http://pypi.python.org/pypi/bunch] DOES WHAT?

	The notmuch mail indexer [http://notmuchmail.org] is used to generate indexes (and requires
Xapian [http://xapian.org/]).

	hyperkitty itself, which is a UI, and not responsible for maintaining the
message archive itself. (Since the archive is in maildir format [http://en.wikipedia.org/wiki/Maildir], any
modern MTA or MDA can build one for you.)

Get it running (under virtualenv):

It is generally a good idea to use virtualenv [http://pypi.python.org/pypi/virtualenv] to create a stable
environment for your Python applications.

	Create the virtualenv:

% virtualenv mailman3

	Activate the virtualenv:

% cd mailman3
% source bin/activate

You don’t have to use virtualenv, though, and if you don’t want to, just
omit the preceding steps. Continue with these steps.

	Install Django and dependencies:

% easy_install django
% easy_install bunch

	Install notmuch – these are bindings that come with the notmuch C library.
The easiest way is probably to install them for your OS vendor and then
symlink them into the virtualenv similar to this:

% yum install -y python-notmuch

	Note: on a multiarch system like Fedora, the directories may be lib64 rather
than lib on 64 bit systems. Next:

% cd lib/python2.7/site-packages
% ln -s /usr/lib/python2.7/site-packages/notmuch .

	Note: this is the version of notmuch I tested with; others may work:

% ln -s /usr/lib/python2.7/site-packages/notmuch-0.11-py2.7.egg-info .

	Install the hyperkitty sources:

% git clone https://github.com/hyperkitty/kittystore.git
% git clone https://github.com/hyperkitty/hyperkitty.git
% git clone https://github.com/hyperkitty/hyperkitty_standalone.git

Running hyperkitty

	Start it:

% cd hyperkitty

	Put the static content where it should be:

% python manage.py collectstatic

	Run the Django server:

% python manage.py runserver

Developing Mailman

The following documentation is generated from the internal developer
documentation. This documentation is also used by the test suite. Another
good source of architectural information is available in the chapter written
by Barry Warsaw for the Architecture of Open Source Applications [http://www.aosabook.org/en/mailman.html].

For now, this will have to suffice as an overview of the Mailman system.

Object model

Every major component of the system is defined in an interface. Look through
src/mailman/interfaces for an understanding of the system components.
Mailman objects which are stored in the database, are defined by model
classes. Objects such as mailing lists, users, members, and addresses
are primary objects within the system.

Obviously, the mailing list is the central object which holds all the
configuration settings for a particular mailing list. A mailing list is
associated with a domain, and all mailing lists are managed by the mailing
list manager.

Users represent people, and have a user id and a display name. Users
are linked to addresses which represent a single email address. One user
can be linked to many addresses, but an address is only linked to one user.
Addresses can be verified or not verified. Mailman will deliver email
only to verified addresses.

Users and addresses are managed by the user manager.

A member is created when a user subscribes to a mailing list, either via
their preferred address or explicitly via one of their linked and verified
addresses. Members link an address to a mailing list, and represent regular
members, digest members, list owners, and list moderators. Members can even
represent non-members (i.e. people not yet subscribed to the mailing list)
for various moderation purposes.

Process model

Messages move around inside the Mailman system by way of queue directories
managed by the switchboard. For example, when a message is first received
by Mailman, it is moved to the in (for “incoming”) queue. During the
processing of this message, it – or copies of it – may be moved to other
queues such as the out queue (for outgoing email), the archive queue (for
sending to the archivers), the digest queue (for composing digests), etc.

A message in a queue is represented by a single file, a .pck file. This
file contains two objects, serialized as Python pickles [http://docs.python.org/2/library/pickle.html]. The first object
is the message being processed, already parsed into a more efficient internal
representation. The second object is a metadata dictionary that records
additional information about the message as it is being processed.

.pck files only exist for messages moving between different system queues.
There is no .pck file for messages while they are actively being
processed.

Each queue directory is associated with a runner process which wakes up
every so often. When the runner wakes up, it examines all the .pck files
in FIFO order, deserializing the message and metadata objects, processing
them. If the message needs further processing in a different queue, it will
be re-serialized back into a .pck file. If not (e.g. because processing
of the message is complete), then no .pck file is written.

The Mailman system uses a few other runners which don’t process messages in a
queue. You can think of these as fairly typical server process, and examples
include the LMTP server, and the HTTP server for processing REST commands.

All of the runners are managed by a master watcher process. When you type
mailman start you are actually starting the master. Based on
configuration options, the master will start the appropriate runners as
subprocesses, and it will watch for the clean exiting of these subprocesses
when mailman stop is called.

Rules and chains

When a message is first received for posting to a mailing list, Mailman
processes the message to determine whether the message is appropriate for the
mailing list. If so, it approves the message and it gets posted. Mailman
can also discard the message so that no further processing occurs. Mailman
can also reject the message, bouncing it back to the original sender, usual
with some indication of why the message was rejected. Mailman can also hold
the message for moderator approval.

Moderation is the phase of processing that determines which of the above
four dispositions will occur for the newly posted message. Moderation does
not generally change the message, but it may record information in the
metadata dictionary. Moderation is performed by the in queue runner.

Each step in the moderation phase is performed by applying a rule to the
message and asking whether the rule hits or misses. Each rule is linked
to an action which is taken if the rule hits (i.e. matches). If the rule
misses (i.e. doesn’t match), then the next rule is tried. All of the
rule/action links are strung together sequentially into a chain, and every
mailing list has a start chain where rule processing begins.

Actually, every mailing list has two start chains, one for regular postings
to the mailing list, and another for posting to the owners of the mailing
list.

To recap: when a message comes into Mailman for posting to a mailing list, the
incoming runner finds the destination mailing list, determines whether the
message is for the entire list membership, or the list owners, and retrieves
the appropriate start chain. The message is then passed to the chain, where
each link in the chain first checks to see if its rule matches, and if so, it
executes the linked action. This action is usually one of the typical
accept, reject, discard, and hold, but other actions are possible.

As you might imagine, you can write new rules, compose them into new chains,
and configure a mailing list to use your custom chain when processing the
message during the moderation phase.

Pipeline of handlers

Once a message is accepted for posting to the mailing list, the message is
usually modified in a number of different ways. For example, some message
headers may be added or removed, some MIME parts might be scrubbed, added, or
rearranged, and various informative headers and footers may be added to the
message.

The process of preparing the message for the list membership (as well as the
digests, archivers, and NNTP) falls to the pipeline of handlers managed by
the pipeline queue.

The pipeline of handlers is similar to the processing chain, except here, a
handler can make any modifications to the message it wants, and there is no
rule decision or action. The message and metadata simply flow through a
sequence of handlers arranged in a named pipeline. Some of the handlers
modify the message in ways described above, and others copy the message to the
outgoing, NNTP, archiver, or digester queues.

As with chains, each mailing list has two pipelines, one for posting to the
list membership, and the other for posting to the list’s owners.

Of course, you can define new handlers, compose them into new pipelines, and
change a mailing list’s pipelines.

Other bits and pieces

There are lots of other pieces to the Mailman puzzle, such as the REST API,
the set of core functionality (logging, initialization, event handling, etc.),
mailing list styles, the API for integrating external archivers and mail
servers. The database layer is an critical piece, and Mailman has an
extensive set of command line commands, and email commands.

Email addresses

Addresses represent a text email address, along with some meta data about
those addresses, such as their registration date, and whether and when they’ve
been validated. Addresses may be linked to the users that Mailman knows
about. Addresses are subscribed to mailing lists though members.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

Creating addresses

Addresses are created directly through the user manager, which starts out with
no addresses.

>>> dump_list(address.email for address in user_manager.addresses)
Empty

Creating an unlinked email address is straightforward.

>>> address_1 = user_manager.create_address('aperson@example.com')
>>> dump_list(address.email for address in user_manager.addresses)
aperson@example.com

However, such addresses have no real name.

>>> print(address_1.display_name)
<BLANKLINE>

You can also create an email address object with a real name.

>>> address_2 = user_manager.create_address(
... 'bperson@example.com', 'Ben Person')
>>> dump_list(address.email for address in user_manager.addresses)
aperson@example.com
bperson@example.com
>>> dump_list(address.display_name for address in user_manager.addresses)
<BLANKLINE>
Ben Person

The str() of the address is the RFC 2822 preferred originator format,
while the repr() carries more information.

>>> print(str(address_2))
Ben Person <bperson@example.com>
>>> print(repr(address_2))
<Address: Ben Person <bperson@example.com> [not verified] at 0x...>

You can assign real names to existing addresses.

>>> address_1.display_name = 'Anne Person'
>>> dump_list(address.display_name for address in user_manager.addresses)
Anne Person
Ben Person

These addresses are not linked to users, and can be seen by searching the user
manager for an associated user.

>>> print(user_manager.get_user('aperson@example.com'))
None
>>> print(user_manager.get_user('bperson@example.com'))
None

You can create email addresses that are linked to users by using a different
interface.

>>> user_1 = user_manager.create_user(
... 'cperson@example.com', u'Claire Person')
>>> dump_list(address.email for address in user_1.addresses)
cperson@example.com
>>> dump_list(address.email for address in user_manager.addresses)
aperson@example.com
bperson@example.com
cperson@example.com
>>> dump_list(address.display_name for address in user_manager.addresses)
Anne Person
Ben Person
Claire Person

And now you can find the associated user.

>>> print(user_manager.get_user('aperson@example.com'))
None
>>> print(user_manager.get_user('bperson@example.com'))
None
>>> user_manager.get_user('cperson@example.com')
<User "Claire Person" (...) at ...>

Deleting addresses

You can remove an unlinked address from the user manager.

>>> user_manager.delete_address(address_1)
>>> dump_list(address.email for address in user_manager.addresses)
bperson@example.com
cperson@example.com
>>> dump_list(address.display_name for address in user_manager.addresses)
Ben Person
Claire Person

Deleting a linked address does not delete the user, but it does unlink the
address from the user.

>>> dump_list(address.email for address in user_1.addresses)
cperson@example.com
>>> user_1.controls('cperson@example.com')
True
>>> address_3 = list(user_1.addresses)[0]
>>> user_manager.delete_address(address_3)
>>> dump_list(address.email for address in user_1.addresses)
Empty
>>> user_1.controls('cperson@example.com')
False
>>> dump_list(address.email for address in user_manager.addresses)
bperson@example.com

Registration and verification

Addresses have two dates, the date the address was registered on and the date
the address was validated on. The former is set when the address is created,
but the latter must be set explicitly.

>>> address_4 = user_manager.create_address(
... 'dperson@example.com', 'Dan Person')
>>> print(address_4.registered_on)
2005-08-01 07:49:23
>>> print(address_4.verified_on)
None

The verification date records when the user has completed a mail-back
verification procedure. It takes a datetime object.

>>> from mailman.utilities.datetime import now
>>> address_4.verified_on = now()
>>> print(address_4.verified_on)
2005-08-01 07:49:23

The address shows the verified status in its representation.

>>> address_4
<Address: Dan Person <dperson@example.com> [verified] at ...>

An event is triggered when the address gets verified.

>>> saved_event = None
>>> address_5 = user_manager.create_address(
... 'eperson@example.com', 'Elle Person')
>>> def save_event(event):
... global saved_event
... saved_event = event
>>> from mailman.testing.helpers import event_subscribers
>>> with event_subscribers(save_event):
... address_5.verified_on = now()
>>> print(saved_event)
<AddressVerificationEvent eperson@example.com 2005-08-01 07:49:23>

An event is also triggered when the address is unverified. In this case,
check the event’s address’s verified_on attribute; if this is None, then the
address is being unverified.

>>> with event_subscribers(save_event):
... address_5.verified_on = None
>>> print(saved_event)
<AddressVerificationEvent eperson@example.com unverified>
>>> print(saved_event.address.verified_on)
None

Case-preserved addresses

Technically speaking, email addresses are case sensitive in the local part.
Mailman preserves the case of addresses and uses the case preserved version
when sending the user a message, but it treats addresses that are different in
case equivalently in all other situations.

>>> address_6 = user_manager.create_address(
... 'FPERSON@example.com', 'Frank Person')

The str() of such an address prints the RFC 2822 preferred originator format
with the original case-preserved address. The repr() contains all the gory
details.

>>> print(str(address_6))
Frank Person <FPERSON@example.com>
>>> print(repr(address_6))
<Address: Frank Person <FPERSON@example.com> [not verified]
 key: fperson@example.com at 0x...>

Both the case-insensitive version of the address and the original
case-preserved version are available on attributes of the IAddress object.

>>> print(address_6.email)
fperson@example.com
>>> print(address_6.original_email)
FPERSON@example.com

Because addresses are case-insensitive for all other purposes, you cannot
create an address that differs only in case. You can get the address using
either the lower cased version or case-preserved version. In fact, searching
for an address is case insensitive.

>>> print(user_manager.get_address('fperson@example.com').email)
fperson@example.com
>>> print(user_manager.get_address('FPERSON@example.com').email)
fperson@example.com

Automatic responder

In various situations, Mailman will send an automatic response to the author
of an email message. For example, if someone sends a command to the
-request address, Mailman will send a response, but to cut down on third
party spam, the sender will only get a certain number of responses per day.

First, given a mailing list you need to adapt it to an IAutoResponseSet.

>>> mlist = create_list('test@example.com')
>>> from mailman.interfaces.autorespond import IAutoResponseSet
>>> response_set = IAutoResponseSet(mlist)

>>> from zope.interface.verify import verifyObject
>>> verifyObject(IAutoResponseSet, response_set)
True

You can’t adapt other objects to an IAutoResponseSet.

>>> IAutoResponseSet(object())
Traceback (most recent call last):
...
TypeError: ('Could not adapt', ...

There are various kinds of response types. For example, Mailman will send an
automatic response when messages are held for approval, or when it receives an
email command. You can find out how many responses for a particular address
have already been sent today.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> address = getUtility(IUserManager).create_address(
... 'aperson@example.com')

>>> from mailman.interfaces.autorespond import Response
>>> print(response_set.todays_count(address, Response.hold))
0
>>> print(response_set.todays_count(address, Response.command))
0

Using the response set, we can record that a hold response is sent to the
address.

>>> response_set.response_sent(address, Response.hold)
>>> print(response_set.todays_count(address, Response.hold))
1
>>> print(response_set.todays_count(address, Response.command))
0

We can also record that a command response was sent.

>>> response_set.response_sent(address, Response.command)
>>> print(response_set.todays_count(address, Response.hold))
1
>>> print(response_set.todays_count(address, Response.command))
1

Let’s send one more.

>>> response_set.response_sent(address, Response.command)
>>> print(response_set.todays_count(address, Response.hold))
1
>>> print(response_set.todays_count(address, Response.command))
2

Now the day flips over and all the counts reset.

>>> from mailman.utilities.datetime import factory
>>> factory.fast_forward()

>>> print(response_set.todays_count(address, Response.hold))
0
>>> print(response_set.todays_count(address, Response.command))
0

Response dates

You can also use the response set to get the date of the last response sent.

>>> response = response_set.last_response(address, Response.hold)
>>> response.mailing_list
<mailing list "test@example.com" at ...>
>>> response.address
<Address: aperson@example.com [not verified] at ...>
>>> response.response_type
<Response.hold: 1>
>>> response.date_sent
datetime.date(2005, 8, 1)

When another response is sent today, that becomes the last one sent.

>>> response_set.response_sent(address, Response.command)
>>> response_set.last_response(address, Response.command).date_sent
datetime.date(2005, 8, 2)

>>> factory.fast_forward(days=3)
>>> response_set.response_sent(address, Response.command)
>>> response_set.last_response(address, Response.command).date_sent
datetime.date(2005, 8, 5)

If there’s been no response sent to a particular address, None is returned.

>>> address = getUtility(IUserManager).create_address(
... 'bperson@example.com')
>>> print(response_set.todays_count(address, Response.command))
0
>>> print(response_set.last_response(address, Response.command))
None

Bounces

When a message to an email address bounces, Mailman’s bounce runner will
register a bounce event. This registration is done through a utility.

>>> from zope.component import getUtility
>>> from zope.interface.verify import verifyObject
>>> from mailman.interfaces.bounce import IBounceProcessor
>>> processor = getUtility(IBounceProcessor)
>>> verifyObject(IBounceProcessor, processor)
True

Registration

When a bounce occurs, it’s always within the context of a specific mailing
list.

>>> mlist = create_list('test@example.com')

The bouncing email contains useful information that will be registered as
well. In particular, the Message-ID is a key piece of data that needs to be
recorded.

>>> msg = message_from_string("""\
... From: mail-daemon@example.org
... To: test-bounces@example.com
... Message-ID: <first>
...
... """)

There is a suite of bounce detectors that are used to heuristically extract
the bouncing email addresses. Various techniques are employed including VERP,
DSN, and magic. It is the bounce runner’s responsibility to extract the set
of bouncing email addresses. These are passed one-by-one to the registration
interface.

>>> event = processor.register(mlist, 'anne@example.com', msg)
>>> print(event.list_id)
test.example.com
>>> print(event.email)
anne@example.com
>>> print(event.message_id)
<first>

Bounce events have a timestamp.

>>> print(event.timestamp)
2005-08-01 07:49:23

Bounce events have a flag indicating whether they’ve been processed or not.

>>> event.processed
False

When a bounce is registered, you can indicate the bounce context.

>>> msg = message_from_string("""\
... From: mail-daemon@example.org
... To: test-bounces@example.com
... Message-ID: <second>
...
... """)

If no context is given, then a default one is used.

>>> event = processor.register(mlist, 'bart@example.com', msg)
>>> print(event.message_id)
<second>
>>> print(event.context)
BounceContext.normal

A probe bounce carries more weight than just a normal bounce.

>>> from mailman.interfaces.bounce import BounceContext
>>> event = processor.register(
... mlist, 'bart@example.com', msg, BounceContext.probe)
>>> print(event.message_id)
<second>
>>> print(event.context)
BounceContext.probe

Domains

Domains are how Mailman interacts with email host names and web host names.

>>> from operator import attrgetter
>>> def show_domains(*, with_owners=False):
... if len(manager) == 0:
... print('no domains')
... return
... for domain in sorted(manager, key=attrgetter('mail_host')):
... print(domain)
... owners = sorted(owner.addresses[0].email
... for owner in domain.owners)
... for owner in owners:
... print('- owner:', owner)

>>> show_domains()
no domains

Adding a domain requires some basic information, of which the email host name
is the only required piece. The other parts are inferred from that.

>>> manager.add('example.org')
<Domain example.org, base_url: http://example.org>
>>> show_domains()
<Domain example.org, base_url: http://example.org>

We can remove domains too.

>>> manager.remove('example.org')
<Domain example.org, base_url: http://example.org>
>>> show_domains()
no domains

Sometimes the email host name is different than the base url for hitting the
web interface for the domain.

>>> manager.add('example.com', base_url='https://mail.example.com')
<Domain example.com, base_url: https://mail.example.com>
>>> show_domains()
<Domain example.com, base_url: https://mail.example.com>

Domains can have explicit descriptions, and can be created with one or more
owners.

>>> manager.add(
... 'example.net',
... base_url='http://lists.example.net',
... description='The example domain',
... owners=['anne@example.com'])
<Domain example.net, The example domain,
 base_url: http://lists.example.net>

>>> show_domains(with_owners=True)
<Domain example.com, base_url: https://mail.example.com>
<Domain example.net, The example domain,
 base_url: http://lists.example.net>
- owner: anne@example.com

Domains can have multiple owners, ideally one of the owners should have a
verified preferred address. However this is not checked right now and the
configuration’s default contact address may be used as a fallback.

>>> net_domain = manager['example.net']
>>> net_domain.add_owner('bart@example.org')
>>> show_domains(with_owners=True)
<Domain example.com, base_url: https://mail.example.com>
<Domain example.net, The example domain, base_url: http://lists.example.net>
- owner: anne@example.com
- owner: bart@example.org

Domains can list all associated mailing lists with the mailing_lists property.

>>> def show_lists(domain):
... mlists = list(domain.mailing_lists)
... for mlist in mlists:
... print(mlist)
... if len(mlists) == 0:
... print('no lists')

>>> net_domain = manager['example.net']
>>> com_domain = manager['example.com']
>>> show_lists(net_domain)
no lists

>>> create_list('test@example.net')
<mailing list "test@example.net" at ...>
>>> transaction.commit()
>>> show_lists(net_domain)
<mailing list "test@example.net" at ...>

>>> show_lists(com_domain)
no lists

In the global domain manager, domains are indexed by their email host name.

>>> for domain in sorted(manager, key=attrgetter('mail_host')):
... print(domain.mail_host)
example.com
example.net

>>> print(manager['example.net'])
<Domain example.net, The example domain,
 base_url: http://lists.example.net>

As with dictionaries, you can also get the domain. If the domain does not
exist, None or a default is returned.

>>> print(manager.get('example.net'))
<Domain example.net, The example domain,
 base_url: http://lists.example.net>

>>> print(manager.get('doesnotexist.com'))
None

>>> print(manager.get('doesnotexist.com', 'blahdeblah'))
blahdeblah

Confirmation tokens

Confirmation tokens can be added to the domain’s url to generate the URL to a
page users can use to confirm their subscriptions.

>>> domain = manager['example.net']
>>> print(domain.confirm_url('abc'))
http://lists.example.net/confirm/abc

Languages

Mailman is multilingual. A language manager handles the known set of
languages at run time, as well as enabling those languages for use in a
running Mailman instance.

>>> from mailman.interfaces.languages import ILanguageManager
>>> from zope.component import getUtility
>>> from zope.interface.verify import verifyObject

>>> mgr = getUtility(ILanguageManager)
>>> verifyObject(ILanguageManager, mgr)
True

Make a copy of the language manager's dictionary, so we can restore it
after the test. Currently the test layer doesn't manage this.
>>> saved = mgr._languages.copy()

The language manager component comes pre-populated; clear it out.
>>> mgr.clear()

A language manager keeps track of the languages it knows about.

>>> list(mgr.codes)
[]
>>> list(mgr.languages)
[]

Adding languages

Adding a new language requires three pieces of information, the 2-character
language code, the English description of the language, and the character set
used by the language. The language object is returned.

>>> mgr.add('en', 'us-ascii', 'English')
<Language [en] English>
>>> mgr.add('it', 'iso-8859-1', 'Italian')
<Language [it] Italian>

And you can get information for all known languages.

>>> print(mgr['en'].description)
English
>>> print(mgr['en'].charset)
us-ascii
>>> print(mgr['it'].description)
Italian
>>> print(mgr['it'].charset)
iso-8859-1

Other iterations

You can iterate over all the known language codes.

>>> mgr.add('pl', 'iso-8859-2', 'Polish')
<Language [pl] Polish>
>>> sorted(mgr.codes)
['en', 'it', 'pl']

You can iterate over all the known languages.

>>> from operator import attrgetter
>>> languages = sorted((language for language in mgr.languages),
... key=attrgetter('code'))
>>> for language in languages:
... print(language.code, language.charset, language.description)
en us-ascii English
it iso-8859-1 Italian
pl iso-8859-2 Polish

You can ask whether a particular language code is known.

>>> 'it' in mgr
True
>>> 'xx' in mgr
False

You can get a particular language by its code.

>>> print(mgr['it'].description)
Italian
>>> print(mgr['xx'].code)
Traceback (most recent call last):
...
KeyError: 'xx'
>>> print(mgr.get('it').description)
Italian
>>> print(mgr.get('xx'))
None
>>> print(mgr.get('xx', 'missing'))
missing

Clearing the known languages

The language manager can forget about all the language codes it knows about.

>>> 'en' in mgr
True

>>> mgr.clear()
>>> 'en' in mgr
False

Restore the data.
>>> mgr._languages = saved

The mailing list manager

The IListManager is how you create, delete, and retrieve mailing list
objects.

>>> from mailman.interfaces.listmanager import IListManager
>>> from zope.component import getUtility
>>> list_manager = getUtility(IListManager)

Creating a mailing list

Creating the list returns the newly created IMailList object.

>>> from mailman.interfaces.mailinglist import IMailingList
>>> mlist = list_manager.create('test@example.com')
>>> IMailingList.providedBy(mlist)
True

All lists with identities have a short name, a host name, a fully qualified
listname, and an RFC 2369 [http://www.faqs.org/rfcs/rfc2369.html] list id. This latter will not change even if the
mailing list moves to a different host, so it is what uniquely distinguishes
the mailing list to the system.

>>> print(mlist.list_name)
test
>>> print(mlist.mail_host)
example.com
>>> print(mlist.fqdn_listname)
test@example.com
>>> print(mlist.list_id)
test.example.com

Deleting a mailing list

Use the list manager to delete a mailing list.

>>> list_manager.delete(mlist)
>>> sorted(list_manager.names)
[]

After deleting the list, you can create it again.

>>> mlist = list_manager.create('test@example.com')
>>> print(mlist.fqdn_listname)
test@example.com

Retrieving a mailing list

When a mailing list exists, you can ask the list manager for it and you will
always get the same object back.

>>> mlist_2 = list_manager.get('test@example.com')
>>> mlist_2 is mlist
True

You can also get a mailing list by it’s list id.

>>> mlist_2 = list_manager.get_by_list_id('test.example.com')
>>> mlist_2 is mlist
True

If you try to get a list that doesn’t existing yet, you get None.

>>> print(list_manager.get('test_2@example.com'))
None
>>> print(list_manager.get_by_list_id('test_2.example.com'))
None

You also get None if the list name is invalid.

>>> print(list_manager.get('foo'))
None

Iterating over all mailing lists

Once you’ve created a bunch of mailing lists, you can use the list manager to
iterate over the mailing list objects, the list posting addresses, or the list
address components.

>>> mlist_3 = list_manager.create('test_3@example.com')
>>> mlist_4 = list_manager.create('test_4@example.com')

>>> for name in sorted(list_manager.names):
... print(name)
test@example.com
test_3@example.com
test_4@example.com

>>> for list_id in sorted(list_manager.list_ids):
... print(list_id)
test.example.com
test_3.example.com
test_4.example.com

>>> for fqdn_listname in sorted(m.fqdn_listname
... for m in list_manager.mailing_lists):
... print(fqdn_listname)
test@example.com
test_3@example.com
test_4@example.com

>>> for list_name, mail_host in sorted(list_manager.name_components):
... print(list_name, '@', mail_host)
test @ example.com
test_3 @ example.com
test_4 @ example.com

Mailing lists

The mailing list is a core object in Mailman. It is uniquely identified in
the system by its list-id which is derived from its posting address,
i.e. the email address you would send a message to in order to post a message
to the mailing list. The list id is defined in RFC 2369 [http://www.faqs.org/rfcs/rfc2369.html].

>>> mlist = create_list('aardvark@example.com')
>>> print(mlist.list_id)
aardvark.example.com
>>> print(mlist.fqdn_listname)
aardvark@example.com

The mailing list also has convenient attributes for accessing the list’s short
name (i.e. local part) and host name.

>>> print(mlist.list_name)
aardvark
>>> print(mlist.mail_host)
example.com

Rosters

Mailing list membership is represented by rosters. Each mailing list has
several rosters of members, representing the subscribers to the mailing list,
the owners, the moderators, and so on. The rosters are defined by a
membership role.

Addresses can be explicitly subscribed to a mailing list. By default, a
subscription puts the address in the member role, meaning that address will
receive a copy of any message sent to the mailing list.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> aperson = user_manager.create_address('aperson@example.com')
>>> bperson = user_manager.create_address('bperson@example.com')
>>> mlist.subscribe(aperson)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
>>> mlist.subscribe(bperson)
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>

Both addresses appear on the roster of members.

>>> from operator import attrgetter
>>> sort_key = attrgetter('address.email')

>>> for member in sorted(mlist.members.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>

By explicitly specifying the role of the subscription, an address can be added
to the owner and moderator rosters.

>>> from mailman.interfaces.member import MemberRole
>>> mlist.subscribe(aperson, MemberRole.owner)
<Member: aperson@example.com on aardvark@example.com as MemberRole.owner>
>>> cperson = user_manager.create_address('cperson@example.com')
>>> mlist.subscribe(cperson, MemberRole.owner)
<Member: cperson@example.com on aardvark@example.com as MemberRole.owner>
>>> mlist.subscribe(cperson, MemberRole.moderator)
<Member: cperson@example.com on aardvark@example.com
 as MemberRole.moderator>

A Person is now both a member and an owner of the mailing list. C Person is
an owner and a moderator.

>>> for member in sorted(mlist.owners.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.owner>
<Member: cperson@example.com on aardvark@example.com as MemberRole.owner>

>>> for member in mlist.moderators.members:
... print(member)
<Member: cperson@example.com on aardvark@example.com
 as MemberRole.moderator>

All rosters can also be accessed indirectly.

>>> roster = mlist.get_roster(MemberRole.member)
>>> for member in sorted(roster.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>

>>> roster = mlist.get_roster(MemberRole.owner)
>>> for member in sorted(roster.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.owner>
<Member: cperson@example.com on aardvark@example.com as MemberRole.owner>

>>> roster = mlist.get_roster(MemberRole.moderator)
>>> for member in roster.members:
... print(member)
<Member: cperson@example.com on aardvark@example.com
 as MemberRole.moderator>

Subscribing users

An alternative way of subscribing to a mailing list is as a user with a
preferred address. This way the user can change their subscription address
just by changing their preferred address.

The user must have a preferred address.

>>> from mailman.utilities.datetime import now
>>> user = user_manager.create_user('dperson@example.com', 'Dave Person')
>>> address = list(user.addresses)[0]
>>> address.verified_on = now()
>>> user.preferred_address = address

The preferred address is used in the subscription.

>>> mlist.subscribe(user)
<Member: Dave Person <dperson@example.com> on aardvark@example.com
 as MemberRole.member>
>>> for member in sorted(mlist.members.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>
<Member: Dave Person <dperson@example.com> on aardvark@example.com
 as MemberRole.member>

If the user’s preferred address changes, their subscribed email address also
changes automatically.

>>> new_address = user.register('dave.person@example.com')
>>> new_address.verified_on = now()
>>> user.preferred_address = new_address

>>> for member in sorted(mlist.members.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>
<Member: dave.person@example.com on aardvark@example.com
 as MemberRole.member>

A user is allowed to explicitly subscribe again with a specific address, even
if this address is their preferred address.

>>> mlist.subscribe(user.preferred_address)
<Member: dave.person@example.com
 on aardvark@example.com as MemberRole.member>

List memberships

Users represent people in Mailman, members represent subscriptions. Users
control email addresses, and rosters are collections of members. A member
ties a subscribed email address to a role, such as member, administrator,
or moderator. Even non-members are represented by a roster.

Roster sets are collections of rosters and a mailing list has a single roster
set that contains all its members, regardless of that member’s role.

Mailing lists and roster sets have an indirect relationship, through the
roster set’s name. Roster also have names, but are related to roster sets
by a more direct containment relationship. This is because it is possible to
store mailing list data in a different database than user data.

When we create a mailing list, it starts out with no members, owners,
moderators, administrators, or nonmembers.

>>> mlist = create_list('ant@example.com')
>>> dump_list(mlist.members.members)
Empty
>>> dump_list(mlist.owners.members)
Empty
>>> dump_list(mlist.moderators.members)
Empty
>>> dump_list(mlist.administrators.members)
Empty
>>> dump_list(mlist.nonmembers.members)
Empty

Administrators

A mailing list’s administrators are defined as union of the list’s owners and
moderators. We can add new owners or moderators to this list by assigning
roles to users. First we have to create the user, because there are no users
in the user database yet.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)
>>> user_1 = user_manager.create_user('aperson@example.com', 'Anne Person')
>>> print(user_1)
<User "Anne Person" (...) at ...>

We can add Anne as an owner of the mailing list, by creating a member role for
her.

>>> from mailman.interfaces.member import MemberRole
>>> address_1 = list(user_1.addresses)[0]
>>> mlist.subscribe(address_1, MemberRole.owner)
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.owner>
>>> dump_list(member.address for member in mlist.owners.members)
Anne Person <aperson@example.com>

Adding Anne as a list owner also makes her an administrator, but does not make
her a moderator. Nor does it make her a member of the list.

>>> dump_list(member.address for member in mlist.administrators.members)
Anne Person <aperson@example.com>
>>> dump_list(member.address for member in mlist.moderators.members)
Empty
>>> dump_list(member.address for member in mlist.members.members)
Empty

Bart becomes a moderator of the list.

>>> user_2 = user_manager.create_user('bperson@example.com', 'Bart Person')
>>> print(user_2)
<User "Bart Person" (...) at ...>
>>> address_2 = list(user_2.addresses)[0]
>>> mlist.subscribe(address_2, MemberRole.moderator)
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>
>>> dump_list(member.address for member in mlist.moderators.members)
Bart Person <bperson@example.com>

Now, both Anne and Bart are list administrators.

>>> from operator import attrgetter
>>> def dump_members(roster):
... all_addresses = list(member.address for member in roster)
... sorted_addresses = sorted(all_addresses, key=attrgetter('email'))
... dump_list(sorted_addresses)

>>> dump_members(mlist.administrators.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>

Members

Similarly, list members are born of users being subscribed with the proper
role.

>>> user_3 = user_manager.create_user(
... 'cperson@example.com', 'Cris Person')
>>> address_3 = list(user_3.addresses)[0]
>>> member = mlist.subscribe(address_3, MemberRole.member)
>>> member
<Member: Cris Person <cperson@example.com>
 on ant@example.com as MemberRole.member>

Cris’s user record can also be retrieved from her member record.

>>> member.user
<User "Cris Person" (3) at ...>

Cris will be a regular delivery member but not a digest member.

>>> dump_members(mlist.members.members)
Cris Person <cperson@example.com>
>>> dump_members(mlist.regular_members.members)
Cris Person <cperson@example.com>
>>> dump_members(mlist.digest_members.addresses)
Empty

It’s easy to make the list administrators members of the mailing list too.

>>> members = []
>>> for address in mlist.administrators.addresses:
... member = mlist.subscribe(address, MemberRole.member)
... members.append(member)
>>> dump_list(members, key=attrgetter('address.email'))
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.member>
<Member: Bart Person <bperson@example.com> on
 ant@example.com as MemberRole.member>
>>> dump_members(mlist.members.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>
Cris Person <cperson@example.com>
>>> dump_members(mlist.regular_members.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>
Cris Person <cperson@example.com>
>>> dump_members(mlist.digest_members.members)
Empty

Nonmembers

Nonmembers are used to represent people who have posted to the mailing list
but are not subscribed to the mailing list. These may be legitimate users who
have found the mailing list and wish to interact without a direct
subscription, or they may be spammers who should never be allowed to contact
the mailing list. Because all the same moderation rules can be applied to
nonmembers, we represent them as the same type of object but with a different
role.

>>> user_6 = user_manager.create_user('fperson@example.com', 'Fred Person')
>>> address_6 = list(user_6.addresses)[0]
>>> member_6 = mlist.subscribe(address_6, MemberRole.nonmember)
>>> member_6
<Member: Fred Person <fperson@example.com> on ant@example.com
 as MemberRole.nonmember>
>>> dump_members(mlist.nonmembers.members)
Fred Person <fperson@example.com>

Nonmembers do not get delivery of any messages.

>>> dump_members(mlist.members.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>
Cris Person <cperson@example.com>
>>> dump_members(mlist.regular_members.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>
Cris Person <cperson@example.com>
>>> dump_members(mlist.digest_members.members)
Empty

Finding members

You can find the IMember object that is a member of a roster for a given
text email address by using the IRoster.get_member() method.

>>> mlist.owners.get_member('aperson@example.com')
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.owner>
>>> mlist.administrators.get_member('aperson@example.com')
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.owner>
>>> mlist.members.get_member('aperson@example.com')
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.member>
>>> mlist.nonmembers.get_member('fperson@example.com')
<Member: Fred Person <fperson@example.com> on
 ant@example.com as MemberRole.nonmember>

However, if the address is not subscribed with the appropriate role, then None
is returned.

>>> print(mlist.administrators.get_member('zperson@example.com'))
None
>>> print(mlist.moderators.get_member('aperson@example.com'))
None
>>> print(mlist.members.get_member('zperson@example.com'))
None
>>> print(mlist.nonmembers.get_member('aperson@example.com'))
None

All subscribers

There is also a roster containing all the subscribers of a mailing list,
regardless of their role.

>>> def sortkey(member):
... return (member.address.email, member.role.value)
>>> for member in sorted(mlist.subscribers.members, key=sortkey):
... print(member.address.email, member.role)
aperson@example.com MemberRole.member
aperson@example.com MemberRole.owner
bperson@example.com MemberRole.member
bperson@example.com MemberRole.moderator
cperson@example.com MemberRole.member
fperson@example.com MemberRole.nonmember

Subscriber type

Members can be subscribed to a mailing list either via an explicit address, or
indirectly through a user’s preferred address. Sometimes you want to know
which one it is.

Herb subscribes to the mailing list via an explicit address.

>>> herb = user_manager.create_address(
... 'hperson@example.com', 'Herb Person')
>>> herb_member = mlist.subscribe(herb)

Iris subscribes to the mailing list via her preferred address.

>>> iris = user_manager.make_user(
... 'iperson@example.com', 'Iris Person')
>>> preferred = list(iris.addresses)[0]
>>> from mailman.utilities.datetime import now
>>> preferred.verified_on = now()
>>> iris.preferred_address = preferred
>>> iris_member = mlist.subscribe(iris)

When we need to know which way a member is subscribed, we can look at the this
attribute.

>>> herb_member.subscriber
<Address: Herb Person <hperson@example.com> [not verified] at ...>
>>> iris_member.subscriber
<User "Iris Person" (5) at ...>

Moderation actions

All members of any role have a moderation action which specifies how
postings from that member are handled. By default, owners and moderators are
automatically accepted for posting to the mailing list.

>>> for member in sorted(mlist.administrators.members,
... key=attrgetter('address.email')):
... print(member.address.email, member.role, member.moderation_action)
aperson@example.com MemberRole.owner Action.accept
bperson@example.com MemberRole.moderator Action.accept

By default, members have a deferred action which specifies that the posting
should go through the normal moderation checks.

>>> for member in sorted(mlist.members.members,
... key=attrgetter('address.email')):
... print(member.address.email, member.role, member.moderation_action)
aperson@example.com MemberRole.member Action.defer
bperson@example.com MemberRole.member Action.defer
cperson@example.com MemberRole.member Action.defer
hperson@example.com MemberRole.member Action.defer
iperson@example.com MemberRole.member Action.defer

Postings by nonmembers are held for moderator approval by default.

>>> for member in mlist.nonmembers.members:
... print(member.address.email, member.role, member.moderation_action)
fperson@example.com MemberRole.nonmember Action.hold

Changing subscriptions

When a user is subscribed to a mailing list via a specific address they
control (as opposed to being subscribed with their preferred address), they
can change their delivery address by setting the appropriate parameter. Note
though that the address they’re changing to must be verified.

>>> bee = create_list('bee@example.com')
>>> gwen = user_manager.create_user('gwen@example.com')
>>> gwen_address = list(gwen.addresses)[0]
>>> gwen_member = bee.subscribe(gwen_address)
>>> for m in bee.members.members:
... print(m.member_id.int, m.mailing_list.list_id, m.address.email)
9 bee.example.com gwen@example.com

Gwen gets a email address.

>>> new_address = gwen.register('gperson@example.com')

Gwen verifies her email address, and updates her membership.

>>> from mailman.utilities.datetime import now
>>> new_address.verified_on = now()
>>> gwen_member.address = new_address

Now her membership reflects the new address.

>>> for m in bee.members.members:
... print(m.member_id.int, m.mailing_list.list_id, m.address.email)
9 bee.example.com gperson@example.com

Events

An event is triggered when a new member is subscribed to a mailing list.

>>> from mailman.testing.helpers import event_subscribers
>>> def handle_event(event):
... print(event)

>>> cat = create_list('cat@example.com')
>>> herb = user_manager.create_address('herb@example.com')
>>> with event_subscribers(handle_event):
... member = cat.subscribe(herb)
herb@example.com joined cat.example.com

An event is triggered when a member is unsubscribed from a mailing list.

>>> with event_subscribers(handle_event):
... member.unsubscribe()
herb@example.com left cat.example.com

The message store

The message store is a collection of messages keyed off of Message-ID and
X-Message-ID-Hash headers. Either of these values can be combined with
the message’s List-Archive header to create a globally unique URI to the
message object in the internet facing interface of the message store. The
X-Message-ID-Hash is the base-32 SHA1 hash of the Message-ID.

>>> from mailman.interfaces.messages import IMessageStore
>>> from zope.component import getUtility
>>> message_store = getUtility(IMessageStore)

A message with a Message-ID header can be stored.

>>> msg = message_from_string("""\
... Subject: An important message
... Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
...
... This message is very important.
... """)
>>> x_message_id_hash = message_store.add(msg)
>>> print(x_message_id_hash)
AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
>>> print(msg.as_string())
Subject: An important message
Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
X-Message-ID-Hash: AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
<BLANKLINE>
This message is very important.
<BLANKLINE>

Finding messages

There are several ways to find a message given either the Message-ID or
X-Message-ID-Hash headers. In either case, if no matching message is
found, None is returned.

>>> print(message_store.get_message_by_id('nothing'))
None
>>> print(message_store.get_message_by_hash('nothing'))
None

Given an existing Message-ID, the message can be found.

>>> message = message_store.get_message_by_id(msg['message-id'])
>>> print(message.as_string())
Subject: An important message
Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
X-Message-ID-Hash: AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
<BLANKLINE>
This message is very important.
<BLANKLINE>

Similarly, we can find messages by the X-Message-ID-Hash:

>>> message = message_store.get_message_by_hash(msg['x-message-id-hash'])
>>> print(message.as_string())
Subject: An important message
Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
X-Message-ID-Hash: AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
<BLANKLINE>
This message is very important.
<BLANKLINE>

Iterating over all messages

The message store provides a means to iterate over all the messages it
contains.

>>> messages = list(message_store.messages)
>>> len(messages)
1
>>> print(messages[0].as_string())
Subject: An important message
Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
X-Message-ID-Hash: AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
<BLANKLINE>
This message is very important.
<BLANKLINE>

Deleting messages from the store

You delete a message from the storage service by providing the Message-ID
for the message you want to delete.

>>> message_id = message['message-id']
>>> message_store.delete_message(message_id)
>>> list(message_store.messages)
[]
>>> print(message_store.get_message_by_id(message_id))
None
>>> print(message_store.get_message_by_hash(message['x-message-id-hash']))
None

Mailing list addresses

Every mailing list has a number of addresses which are publicly available.
These are defined in the IMailingListAddresses interface.

>>> mlist = create_list('_xtest@example.com')

The posting address is where people send messages to be posted to the mailing
list. This is exactly the same as the fully qualified list name.

>>> print(mlist.fqdn_listname)
_xtest@example.com
>>> print(mlist.posting_address)
_xtest@example.com

Messages to the mailing list’s no reply address always get discarded without
prejudice.

>>> print(mlist.no_reply_address)
noreply@example.com

The mailing list’s owner address reaches the human moderators.

>>> print(mlist.owner_address)
_xtest-owner@example.com

The request address goes to the list’s email command robot.

>>> print(mlist.request_address)
_xtest-request@example.com

The bounces address accepts and processes all potential bounces.

>>> print(mlist.bounces_address)
_xtest-bounces@example.com

The join (a.k.a. subscribe) address is where someone can email to get added to
the mailing list. The subscribe alias is a synonym for join, but it’s
deprecated.

>>> print(mlist.join_address)
_xtest-join@example.com
>>> print(mlist.subscribe_address)
_xtest-subscribe@example.com

The leave (a.k.a. unsubscribe) address is where someone can email to get added
to the mailing list. The unsubscribe alias is a synonym for leave, but it’s
deprecated.

>>> print(mlist.leave_address)
_xtest-leave@example.com
>>> print(mlist.unsubscribe_address)
_xtest-unsubscribe@example.com

Email confirmations

Email confirmation messages are sent when actions such as subscriptions need
to be confirmed. It requires that a cookie be provided, which will be
included in the local part of the email address. The exact format of this is
dependent on the verp_confirm_format configuration variable.

>>> print(mlist.confirm_address('cookie'))
_xtest-confirm+cookie@example.com
>>> print(mlist.confirm_address('wookie'))
_xtest-confirm+wookie@example.com

>>> config.push('test config', """
... [mta]
... verp_confirm_format: $address---$cookie
... """)
>>> print(mlist.confirm_address('cookie'))
_xtest-confirm---cookie@example.com
>>> config.pop('test config')

The pending database

The pending database is where various types of events which need confirmation
are stored. These can include email address registration events, held
messages (but only for user confirmation), auto-approvals, and probe bounces.
This is not where messages held for administrator approval are kept.

In order to pend an event, you first need a pending database.

>>> from mailman.interfaces.pending import IPendings
>>> from zope.component import getUtility
>>> pendingdb = getUtility(IPendings)

There are nothing in the pendings database.

>>> pendingdb.count
0

The pending database can add any IPendable to the database, returning a
token that can be used in urls and such.

>>> from zope.interface import implementer
>>> from mailman.interfaces.pending import IPendable
>>> @implementer(IPendable)
... class SimplePendable(dict):
... pass

>>> subscription = SimplePendable(
... type='subscription',
... address='aperson@example.com',
... display_name='Anne Person',
... language='en',
... password='xyz')
>>> token = pendingdb.add(subscription)
>>> len(token)
40

There’s exactly one entry in the pendings database now.

>>> pendingdb.count
1

You can confirm the pending, which means returning the IPendable structure
(as a dictionary) from the database that matches the token. If the token
isn’t in the database, None is returned.

>>> pendable = pendingdb.confirm(b'missing')
>>> print(pendable)
None
>>> pendable = pendingdb.confirm(token)
>>> dump_msgdata(pendable)
address : aperson@example.com
display_name: Anne Person
language : en
password : xyz
type : subscription

After confirmation, the token is no longer in the database.

>>> print(pendingdb.confirm(token))
None

There are a few other things you can do with the pending database. When you
confirm a token, you can leave it in the database, or in other words, not
expunge it.

>>> event_1 = SimplePendable(type='one')
>>> token_1 = pendingdb.add(event_1)
>>> event_2 = SimplePendable(type='two')
>>> token_2 = pendingdb.add(event_2)
>>> event_3 = SimplePendable(type='three')
>>> token_3 = pendingdb.add(event_3)
>>> pendable = pendingdb.confirm(token_1, expunge=False)
>>> dump_msgdata(pendable)
type: one
>>> pendable = pendingdb.confirm(token_1, expunge=True)
>>> dump_msgdata(pendable)
type: one
>>> print(pendingdb.confirm(token_1))
None

You can iterate over all the pendings in the database.

>>> pendables = list(pendingdb)
>>> def sort_key(item):
... token, pendable = item
... return pendable['type']
>>> sorted_pendables = sorted(pendables, key=sort_key)
>>> for token, pendable in sorted_pendables:
... print(pendable['type'])
three
two

An event can be given a lifetime when it is pended, otherwise it just uses a
default lifetime.

>>> from datetime import timedelta
>>> yesterday = timedelta(days=-1)
>>> event_4 = SimplePendable(type='four')
>>> token_4 = pendingdb.add(event_4, lifetime=yesterday)

Every once in a while the pending database is cleared of old records.

>>> pendingdb.evict()
>>> print(pendingdb.confirm(token_4))
None
>>> pendable = pendingdb.confirm(token_2)
>>> dump_msgdata(pendable)
type: two

Registration

When a user wants to join a mailing list, they must register and verify their
email address. Then depending on how the mailing list is configured, they may
need to confirm their subscription and have it approved by the list
moderator. The IRegistrar interface manages this work flow.

>>> from mailman.interfaces.registrar import IRegistrar

Registrars adapt mailing lists.

>>> from mailman.interfaces.mailinglist import SubscriptionPolicy
>>> mlist = create_list('ant@example.com')
>>> mlist.send_welcome_message = False
>>> mlist.subscription_policy = SubscriptionPolicy.open
>>> registrar = IRegistrar(mlist)

Usually, addresses are registered, but users with preferred addresses can be
registered too.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> anne = getUtility(IUserManager).create_address(
... 'anne@example.com', 'Anne Person')

Register an email address

When the registration steps involve confirmation or moderator approval, the
process will pause until these steps are completed. A unique token is created
which represents this work flow.

Anne attempts to join the mailing list.

>>> token, token_owner, member = registrar.register(anne)

Because her email address has not yet been verified, she has not yet become a
member of the mailing list.

>>> print(member)
None
>>> print(mlist.members.get_member('anne@example.com'))
None

Once she verifies her email address, she will become a member of the mailing
list. In this case, verifying implies that she also confirms her wish to join
the mailing list.

>>> token, token_owner, member = registrar.confirm(token)
>>> member
<Member: Anne Person <anne@example.com> on ant@example.com
 as MemberRole.member>
>>> mlist.members.get_member('anne@example.com')
<Member: Anne Person <anne@example.com> on ant@example.com
 as MemberRole.member>

Register a user

Users can also register, but they must have a preferred address. The mailing
list will deliver messages to this preferred address.

>>> bart = getUtility(IUserManager).make_user(
... 'bart@example.com', 'Bart Person')

Bart verifies his address and makes it his preferred address.

>>> from mailman.utilities.datetime import now
>>> preferred = list(bart.addresses)[0]
>>> preferred.verified_on = now()
>>> bart.preferred_address = preferred

The mailing list’s subscription policy does not require Bart to confirm his
subscription, but the moderate does want to approve all subscriptions.

>>> mlist.subscription_policy = SubscriptionPolicy.moderate

Now when Bart registers as a user for the mailing list, a token will still be
generated, but this is only used by the moderator. At first, Bart is not
subscribed to the mailing list.

>>> token, token_owner, member = registrar.register(bart)
>>> print(member)
None
>>> print(mlist.members.get_member('bart@example.com'))
None

When the moderator confirms Bart’s subscription, he joins the mailing list.

>>> token, token_owner, member = registrar.confirm(token)
>>> member
<Member: Bart Person <bart@example.com> on ant@example.com
 as MemberRole.member>
>>> mlist.members.get_member('bart@example.com')
<Member: Bart Person <bart@example.com> on ant@example.com
 as MemberRole.member>

Moderator requests

Various actions will be held for moderator approval, such as subscriptions to
closed lists, or postings by non-members. The requests database is the low
level interface to these actions requiring approval.

An application level interface for holding messages and
membership changes is also available.

Mailing list-centric

A set of requests are always related to a particular mailing list. Adapt the
mailing list to get its requests.

>>> from mailman.interfaces.requests import IListRequests
>>> from zope.interface.verify import verifyObject

>>> mlist = create_list('test@example.com')
>>> requests = IListRequests(mlist)
>>> verifyObject(IListRequests, requests)
True
>>> requests.mailing_list
<mailing list "test@example.com" at ...>

Holding requests

The list’s requests database starts out empty.

>>> print(requests.count)
0
>>> dump_list(requests.held_requests)
Empty

At the lowest level, the requests database is very simple. Holding a request
requires a request type (as an enum value), a key, and an optional dictionary
of associated data. The request database assigns no semantics to the held
data, except for the request type.

>>> from mailman.interfaces.requests import RequestType

We can hold messages for moderator approval.

>>> requests.hold_request(RequestType.held_message, 'hold_1')
1

We can hold subscription requests for moderator approval.

>>> requests.hold_request(RequestType.subscription, 'hold_2')
2

We can hold unsubscription requests for moderator approval.

>>> requests.hold_request(RequestType.unsubscription, 'hold_3')
3

Getting requests

We can see the total number of requests being held.

>>> print(requests.count)
3

We can also see the number of requests being held by request type.

>>> print(requests.count_of(RequestType.subscription))
1
>>> print(requests.count_of(RequestType.unsubscription))
1

We can also see when there are multiple held requests of a particular type.

>>> print(requests.hold_request(RequestType.held_message, 'hold_4'))
4
>>> print(requests.count_of(RequestType.held_message))
2

We can ask the requests database for a specific request, by providing the id
of the request data we want. This returns a 2-tuple of the key and data we
originally held.

>>> key, data = requests.get_request(2)
>>> print(key)
hold_2

There was no additional data associated with request 2.

>>> print(data)
None

If we ask for a request that is not in the database, we get None back.

>>> print(requests.get_request(801))
None

Additional data

When a request is held, additional data can be associated with it, in the form
of a dictionary with string values.

>>> data = dict(foo='yes', bar='no')
>>> requests.hold_request(RequestType.held_message, 'hold_5', data)
5

The data is returned when the request is retrieved. The dictionary will have
an additional key which holds the name of the request type.

>>> key, data = requests.get_request(5)
>>> print(key)
hold_5
>>> dump_msgdata(data)
_request_type: held_message
bar : no
foo : yes

Iterating over requests

To make it easier to find specific requests, the list requests can be iterated
over by type.

>>> print(requests.count_of(RequestType.held_message))
3
>>> for request in requests.of_type(RequestType.held_message):
... key, data = requests.get_request(request.id)
... print(request.id, request.request_type, key)
... if data is not None:
... for key in sorted(data):
... print(' {0}: {1}'.format(key, data[key]))
1 RequestType.held_message hold_1
4 RequestType.held_message hold_4
5 RequestType.held_message hold_5
 _request_type: held_message
 bar: no
 foo: yes

Deleting requests

Once a specific request has been handled, it can be deleted from the requests
database.

>>> print(requests.count)
5
>>> requests.delete_request(2)
>>> print(requests.count)
4

Request 2 is no longer in the database.

>>> print(requests.get_request(2))
None

>>> for request in requests.held_requests:
... requests.delete_request(request.id)
>>> print(requests.count)
0

The user manager

The IUserManager is how you create, delete, and manage users.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

Creating users

There are several ways you can create a user object. The simplest is to
create a blank user by not providing an address or real name at creation
time. This user will have an empty string as their real name, but will not
have a password.

>>> from mailman.interfaces.user import IUser
>>> from zope.interface.verify import verifyObject
>>> user = user_manager.create_user()
>>> verifyObject(IUser, user)
True

>>> dump_list(address.email for address in user.addresses)
Empty
>>> print(user.display_name)

>>> print(user.password)
None

The user has preferences, but none of them will be specified.

>>> print(user.preferences)
<Preferences ...>

A user can be assigned a real name.

>>> user.display_name = 'Anne Person'
>>> dump_list(user.display_name for user in user_manager.users)
Anne Person

A user can be assigned a password.

>>> user.password = 'secret'
>>> dump_list(user.password for user in user_manager.users)
secret

You can also create a user with an address to start out with.

>>> user_2 = user_manager.create_user('bperson@example.com')
>>> verifyObject(IUser, user_2)
True
>>> dump_list(address.email for address in user_2.addresses)
bperson@example.com
>>> dump_list(user.display_name for user in user_manager.users)
<BLANKLINE>
Anne Person

As above, you can assign a real name to such users.

>>> user_2.display_name = 'Ben Person'
>>> dump_list(user.display_name for user in user_manager.users)
Anne Person
Ben Person

You can also create a user with just a real name.

>>> user_3 = user_manager.create_user(display_name='Claire Person')
>>> verifyObject(IUser, user_3)
True
>>> dump_list(address.email for address in user.addresses)
Empty
>>> dump_list(user.display_name for user in user_manager.users)
Anne Person
Ben Person
Claire Person

Finally, you can create a user with both an address and a real name.

>>> user_4 = user_manager.create_user('dperson@example.com', 'Dan Person')
>>> verifyObject(IUser, user_3)
True
>>> dump_list(address.email for address in user_4.addresses)
dperson@example.com
>>> dump_list(address.display_name for address in user_4.addresses)
Dan Person
>>> dump_list(user.display_name for user in user_manager.users)
Anne Person
Ben Person
Claire Person
Dan Person

Deleting users

You delete users by going through the user manager. The deleted user is no
longer available through the user manager iterator.

>>> user_manager.delete_user(user)
>>> dump_list(user.display_name for user in user_manager.users)
Ben Person
Claire Person
Dan Person

Finding users

You can ask the user manager to find the IUser that controls a particular
email address. You’ll get back the original user object if it’s found. Note
that the .get_user() method takes a string email address, not an
IAddress object.

>>> address = list(user_4.addresses)[0]
>>> found_user = user_manager.get_user(address.email)
>>> found_user
<User "Dan Person" (...) at ...>
>>> found_user is user_4
True

If the address is not in the user database or does not have a user associated
with it, you will get None back.

>>> print(user_manager.get_user('zperson@example.com'))
None
>>> user_4.unlink(address)
>>> print(user_manager.get_user(address.email))
None

Users can also be found by their unique user id.

>>> found_user = user_manager.get_user_by_id(user_4.user_id)
>>> user_4
<User "Dan Person" (...) at ...>
>>> found_user
<User "Dan Person" (...) at ...>
>>> user_4.user_id == found_user.user_id
True

If a non-existent user id is given, None is returned.

>>> from uuid import UUID
>>> print(user_manager.get_user_by_id(UUID(int=801)))
None

Finding all members

The user manager can return all the members known to the system.

>>> mlist = create_list('test@example.com')
>>> mlist.subscribe(list(user_2.addresses)[0])
<Member: bperson@example.com on test@example.com as MemberRole.member>
>>> mlist.subscribe(user_manager.create_address('eperson@example.com'))
<Member: eperson@example.com on test@example.com as MemberRole.member>
>>> mlist.subscribe(user_manager.create_address('fperson@example.com'))
<Member: fperson@example.com on test@example.com as MemberRole.member>

Bart is also the owner of the mailing list.

>>> from mailman.interfaces.member import MemberRole
>>> mlist.subscribe(list(user_2.addresses)[0], MemberRole.owner)
<Member: bperson@example.com on test@example.com as MemberRole.owner>

There are now four members in the system. Sort them by address then role.

>>> def sort_key(member):
... return (member.address.email, member.role.name)
>>> members = sorted(user_manager.members, key=sort_key)
>>> for member in members:
... print(member.mailing_list.list_id, member.address.email,
... member.role)
test.example.com bperson@example.com MemberRole.member
test.example.com bperson@example.com MemberRole.owner
test.example.com eperson@example.com MemberRole.member
test.example.com fperson@example.com MemberRole.member

Creating a new user

A common situation (especially during the subscription life cycle) is to
create a user linked to an address, with a preferred address. Say for
example, we are asked to subscribe a new address we have never seen before.

>>> cris = user_manager.make_user('cris@example.com', 'Cris Person')

Since we’ve never seen cris@example.com before, this call creates a new
user with the given email and display name.

>>> cris
<User "Cris Person" (5) at ...>

The user has a single unverified address object.

>>> for address in cris.addresses:
... print(repr(address))
<Address: Cris Person <cris@example.com> [not verified] at ...>

Users

Users are entities that represent people. A user has a real name and a
optional encoded password. A user may also have an optional preferences and a
set of addresses they control. They can even have a preferred address,
i.e. one that they use by default.

See usermanager.txt for examples of how to create, delete, and find users.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

User data

Users may have a real name and a password.

>>> user_1 = user_manager.create_user()
>>> user_1.password = 'my password'
>>> user_1.display_name = 'Zoe Person'
>>> dump_list(user.display_name for user in user_manager.users)
Zoe Person
>>> dump_list(user.password for user in user_manager.users)
my password

The password and real name can be changed at any time.

>>> user_1.display_name = 'Zoe X. Person'
>>> user_1.password = 'another password'
>>> dump_list(user.display_name for user in user_manager.users)
Zoe X. Person
>>> dump_list(user.password for user in user_manager.users)
another password

When the user’s password is changed, an event is triggered.

>>> saved_event = None
>>> def save_event(event):
... global saved_event
... saved_event = event
>>> from mailman.testing.helpers import event_subscribers
>>> with event_subscribers(save_event):
... user_1.password = 'changed again'
>>> print(saved_event)
<PasswordChangeEvent Zoe X. Person>

The event holds a reference to the IUser that changed their password.

>>> print(saved_event.user.display_name)
Zoe X. Person
>>> print(saved_event.user.password)
changed again

Basic user identification

Although rarely visible to users, every user has a unique immutable ID. This
ID is generated randomly at the time the user is created, and is represented
by a UUID.

>>> print(user_1.user_id)
00000000-0000-0000-0000-000000000001

User records also have a date on which they where created.

The test suite uses a predictable timestamp.
>>> print(user_1.created_on)
2005-08-01 07:49:23

Users addresses

One of the pieces of information that a user links to is a set of email
addresses they control, in the form of IAddress objects. A user can
control many addresses, but addresses may be linked to only one user.

The easiest way to link a user to an address is to just register the new
address on a user object.

>>> user_1.register('zperson@example.com', 'Zoe Person')
<Address: Zoe Person <zperson@example.com> [not verified] at 0x...>
>>> user_1.register('zperson@example.org')
<Address: zperson@example.org [not verified] at 0x...>
>>> dump_list(address.email for address in user_1.addresses)
zperson@example.com
zperson@example.org
>>> dump_list(address.display_name for address in user_1.addresses)
<BLANKLINE>
Zoe Person

You can also create the address separately and then link it to the user.

>>> address_1 = user_manager.create_address('zperson@example.net')
>>> user_1.link(address_1)
>>> dump_list(address.email for address in user_1.addresses)
zperson@example.com
zperson@example.net
zperson@example.org
>>> dump_list(address.display_name for address in user_1.addresses)
<BLANKLINE>
<BLANKLINE>
Zoe Person

You can also ask whether a given user controls a given address.

>>> user_1.controls(address_1.email)
True
>>> user_1.controls('bperson@example.com')
False

Given a text email address, the user manager can find the user that controls
that address.

>>> user_manager.get_user('zperson@example.com') is user_1
True
>>> user_manager.get_user('zperson@example.net') is user_1
True
>>> user_manager.get_user('zperson@example.org') is user_1
True
>>> print(user_manager.get_user('bperson@example.com'))
None

Addresses can also be unlinked from a user.

>>> user_1.unlink(address_1)
>>> user_1.controls('zperson@example.net')
False
>>> print(user_manager.get_user('aperson@example.net'))
None

Preferred address

Users can register a preferred address. When subscribing to a mailing list,
unless some other address is explicitly specified, the user will be subscribed
with their preferred address. This allows them to change their preferred
address once, and have all their subscriptions automatically track this
change.

By default, a user has no preferred address.

>>> user_2 = user_manager.create_user()
>>> print(user_2.preferred_address)
None

Even when a user registers an address, this address will not be set as the
preferred address.

>>> anne = user_2.register('anne@example.com', 'Anne Person')
>>> print(user_2.preferred_address)
None

Once the address has been verified, it can be set as the preferred address,
but only if the address is either controlled by the user or uncontrolled. In
the latter case, setting it as the preferred address makes it controlled by
the user.

>>> from mailman.utilities.datetime import now
>>> anne.verified_on = now()
>>> anne
<Address: Anne Person <anne@example.com> [verified] at ...>
>>> user_2.controls(anne.email)
True
>>> user_2.preferred_address = anne
>>> user_2.preferred_address
<Address: Anne Person <anne@example.com> [verified] at ...>

>>> aperson = user_manager.create_address('aperson@example.com')
>>> user_2.controls(aperson.email)
False
>>> aperson.verified_on = now()
>>> user_2.preferred_address = aperson
>>> user_2.controls(aperson.email)
True

A user can disavow their preferred address.

>>> user_2.preferred_address
<Address: aperson@example.com [verified] at ...>
>>> del user_2.preferred_address
>>> print(user_2.preferred_address)
None

The preferred address always shows up in the set of addresses controlled by
this user.

>>> from operator import attrgetter
>>> for address in sorted(user_2.addresses, key=attrgetter('email')):
... print(address.email)
anne@example.com
aperson@example.com

Users and preferences

This is a helper function for the following section.

>>> def show_prefs(prefs):
... print('acknowledge_posts :', prefs.acknowledge_posts)
... print('preferred_language :', prefs.preferred_language)
... print('receive_list_copy :', prefs.receive_list_copy)
... print('receive_own_postings :', prefs.receive_own_postings)
... print('delivery_mode :', prefs.delivery_mode)

Users have preferences, but these preferences have no default settings.

>>> from mailman.interfaces.preferences import IPreferences
>>> show_prefs(user_1.preferences)
acknowledge_posts : None
preferred_language : None
receive_list_copy : None
receive_own_postings : None
delivery_mode : None

Some of these preferences are booleans and they can be set to True or
False.

>>> from mailman.interfaces.languages import ILanguageManager
>>> getUtility(ILanguageManager).add('it', 'iso-8859-1', 'Italian')
<Language [it] Italian>

>>> from mailman.core.constants import DeliveryMode
>>> prefs = user_1.preferences
>>> prefs.acknowledge_posts = True
>>> prefs.preferred_language = 'it'
>>> prefs.receive_list_copy = False
>>> prefs.receive_own_postings = False
>>> prefs.delivery_mode = DeliveryMode.regular
>>> show_prefs(user_1.preferences)
acknowledge_posts : True
preferred_language : <Language [it] Italian>
receive_list_copy : False
receive_own_postings : False
delivery_mode : DeliveryMode.regular

Subscriptions

Users know which mailing lists they are subscribed to, regardless of
membership role.

>>> user_1.link(address_1)
>>> dump_list(address.email for address in user_1.addresses)
zperson@example.com
zperson@example.net
zperson@example.org
>>> com = user_manager.get_address('zperson@example.com')
>>> org = user_manager.get_address('zperson@example.org')
>>> net = user_manager.get_address('zperson@example.net')

>>> mlist_1 = create_list('xtest_1@example.com')
>>> mlist_2 = create_list('xtest_2@example.com')
>>> mlist_3 = create_list('xtest_3@example.com')
>>> from mailman.interfaces.member import MemberRole

>>> mlist_1.subscribe(com, MemberRole.member)
<Member: Zoe Person <zperson@example.com> on xtest_1@example.com as
 MemberRole.member>
>>> mlist_2.subscribe(org, MemberRole.member)
<Member: zperson@example.org on xtest_2@example.com as MemberRole.member>
>>> mlist_2.subscribe(org, MemberRole.owner)
<Member: zperson@example.org on xtest_2@example.com as MemberRole.owner>
>>> mlist_3.subscribe(net, MemberRole.moderator)
<Member: zperson@example.net on xtest_3@example.com as
 MemberRole.moderator>

>>> memberships = user_1.memberships
>>> from mailman.interfaces.roster import IRoster
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IRoster, memberships)
True
>>> def sortkey(member):
... return member.address.email, member.mailing_list, member.role.value
>>> members = sorted(memberships.members, key=sortkey)
>>> len(members)
4
>>> for member in sorted(members, key=sortkey):
... print(member.address.email, member.mailing_list.list_id,
... member.role)
zperson@example.com xtest_1.example.com MemberRole.member
zperson@example.net xtest_3.example.com MemberRole.moderator
zperson@example.org xtest_2.example.com MemberRole.member
zperson@example.org xtest_2.example.com MemberRole.owner

Server owners

Some users are server owners. Zoe is not yet a server owner.

>>> user_1.is_server_owner
False

So, let’s make her one.

>>> user_1.is_server_owner = True
>>> user_1.is_server_owner
True

Alias Overview

A typical Mailman list exposes nine aliases which point to seven different
wrapped scripts. E.g. for a list named mylist, you’d have:

mylist-bounces -> bounces
mylist-confirm -> confirm
mylist-join -> join (-subscribe is an alias)
mylist-leave -> leave (-unsubscribe is an alias)
mylist-owner -> owner
mylist -> post
mylist-request -> request

-request, -join, and -leave are a robot addresses; their sole
purpose is to process emailed commands, although the latter two are hardcoded
to subscription and unsubscription requests. -bounces is the automated
bounce processor, and all messages to list members have their return address
set to -bounces. If the bounce processor fails to extract a bouncing
member address, it can optionally forward the message on to the list owners.

-owner is for reaching a human operator with minimal list interaction
(i.e. no bounce processing). -confirm is another robot address which
processes replies to VERP-like confirmation notices.

So delivery flow of messages look like this:

joerandom ---> mylist ---> list members
 | |
 | |[bounces]
 | mylist-bounces <---+ <-------------------------------+
 | | |
 | +--->[internal bounce processing] |
 | ^ | |
 | | | [bounce found] |
 | [bounces *] +--->[register and discard] |
			[*]
[list owners]	[no bounce found]		
^			
+-------> mylist-owner <--------+			
data/owner-bounces.mbox <--[site list] <---+			
+-------> mylist-join--+			
+------> mylist-leave--+			
v			
+-------> mylist-request			
+---> [command processor]			
 +-----> mylist-confirm ----> +---> joerandom |
 | |
 |[bounces] |
 +----------------------+

A person can send an email to the list address (for posting), the -owner
address (to reach the human operator), or the -confirm, -join,
-leave, and -request mailbots. Message to the list address are then
forwarded on to the list membership, with bounces directed to the -bounces
address.

[*] Messages sent to the -owner address are forwarded on to the list
owner/moderators. All -owner destined messages have their bounces
directed to the site list -bounces address, regardless of whether a human
sent the message or the message was crafted internally. The intention here is
that the site owners want to be notified when one of their list owners’
addresses starts bouncing (yes, the will be automated in a future release).

Any messages to site owners has their bounces directed to a special loop
killer address, which just dumps the message into
data/owners-bounces.mbox.

Finally, message to any of the mailbots causes the requested action to be
performed. Results notifications are sent to the author of the message, which
all bounces pointing back to the -bounces address.

The command runner

This runner’s purpose is to process and respond to email commands. Commands
are extensible using the Mailman plug-in system, but Mailman comes with a
number of email commands out of the box. These are processed when a message
is sent to the list’s -request address.

>>> mlist = create_list('test@example.com')
>>> mlist.send_welcome_messages = False

A command in the Subject

For example, the echo command simply echoes the original command back to
the sender. The command can be in the Subject header.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test-request@example.com
... Subject: echo hello
... Message-ID: <aardvark>
...
... """)

>>> from mailman.app.inject import inject_message
>>> filebase = inject_message(mlist, msg, switchboard='command')
>>> from mailman.runners.command import CommandRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> command = make_testable_runner(CommandRunner)
>>> command.run()

And now the response is in the virgin queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
From: test-bounces@example.com
To: aperson@example.com
...

The results of your email command are provided below.

- Original message details:
 From: aperson@example.com
 Subject: echo hello
 Date: ...
 Message-ID: <aardvark>

- Results:
echo hello

- Done.

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : test.example.com
nodecorate : True
recipients : {'aperson@example.com'}
reduced_list_headers: True
version : ...

A command in the body

The command can also be found in the body of the message, as long as the
message is plain text.

>>> msg = message_from_string("""\
... From: bperson@example.com
... To: test-request@example.com
... Message-ID: <bobcat>
...
... echo foo bar
... """)

>>> filebase = inject_message(mlist, msg, switchboard='command')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
From: test-bounces@example.com
To: bperson@example.com
...
Precedence: bulk

The results of your email command are provided below.

- Original message details:
 From: bperson@example.com
 Subject: n/a
 Date: ...
 Message-ID: <bobcat>

- Results:
echo foo bar

- Done.

Implicit commands

For some commands, specifically for joining and leaving a mailing list, there
are email aliases that act like commands, even when there’s nothing else in
the Subject or body. For example, to join a mailing list, a user need
only email the -join address or -subscribe address (the latter is
deprecated).

Because Dirk has never registered with Mailman before, he gets two responses.
The first is a confirmation message so that Dirk can validate his email
address, and the other is the results of his email command.

>>> msg = message_from_string("""\
... From: Dirk Person <dperson@example.com>
... To: test-join@example.com
...
... """)

>>> filebase = inject_message(
... mlist, msg, switchboard='command', subaddress='join')
>>> command.run()
>>> messages = get_queue_messages('virgin', sort_on='subject')
>>> len(messages)
2

>>> from mailman.interfaces.registrar import IRegistrar
>>> registrar = IRegistrar(mlist)
>>> for item in messages:
... subject = item.msg['subject']
... print('Subject:', subject)
... if 'confirm' in str(subject):
... token = str(subject).split()[1].strip()
... new_token, token_owner, member = registrar.confirm(token)
... assert new_token is None, 'Confirmation failed'
Subject: The results of your email commands
Subject: confirm ...

Similarly, to leave a mailing list, the user need only email the -leave or
-unsubscribe address (the latter is deprecated).

>>> msg = message_from_string("""\
... From: dperson@example.com
... To: test-leave@example.com
...
... """)

>>> filebase = inject_message(
... mlist, msg, switchboard='command', subaddress='leave')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
From: test-bounces@example.com
To: dperson@example.com
...

The results of your email command are provided below.

- Original message details:
From: dperson@example.com
Subject: n/a
Date: ...
Message-ID: ...

- Results:
Dirk Person <dperson@example.com> left test@example.com

- Done.

The -confirm address is also available as an implicit command.

>>> msg = message_from_string("""\
... From: dperson@example.com
... To: test-confirm+123@example.com
...
... """)

>>> filebase = inject_message(
... mlist, msg, switchboard='command', subaddress='confirm')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
From: test-bounces@example.com
To: dperson@example.com
...

The results of your email command are provided below.

- Original message details:
From: dperson@example.com
Subject: n/a
Date: ...
Message-ID: ...

- Results:
Confirmation token did not match

- Done.

Stopping command processing

The end command stops email processing, so that nothing following is
looked at by the command queue.

>>> msg = message_from_string("""\
... From: cperson@example.com
... To: test-request@example.com
... Message-ID: <caribou>
...
... echo foo bar
... end ignored
... echo baz qux
... """)

>>> filebase = inject_message(mlist, msg, switchboard='command')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
...

- Results:
echo foo bar

- Unprocessed:
echo baz qux

- Done.

The stop command is an alias for end.

>>> msg = message_from_string("""\
... From: cperson@example.com
... To: test-request@example.com
... Message-ID: <caribou>
...
... echo foo bar
... stop ignored
... echo baz qux
... """)

>>> filebase = inject_message(mlist, msg, switchboard='command')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
...

- Results:
echo foo bar

- Unprocessed:
echo baz qux

- Done.

Digesting

Mailman crafts and sends digests by a separate digest runner process. This
starts by a number of messages being posted to the mailing list.

>>> mlist = create_list('test@example.com')
>>> mlist.digest_size_threshold = 0.6
>>> mlist.volume = 1
>>> mlist.next_digest_number = 1
>>> mlist.send_welcome_message = False

>>> from string import Template
>>> process = config.handlers['to-digest'].process

>>> def fill_digest():
... size = 0
... for i in range(1, 5):
... text = Template("""\
... From: aperson@example.com
... To: xtest@example.com
... Subject: Test message $i
... List-Post: <test@example.com>
...
... Here is message $i
... """).substitute(i=i)
... msg = message_from_string(text)
... process(mlist, msg, {})
... size += len(text)
... if size >= mlist.digest_size_threshold * 1024:
... break

>>> fill_digest()

The runner gets kicked off when a marker message gets dropped into the digest
queue. The message metadata points to the mailbox file containing the
messages to put in the digest.

>>> digestq = config.switchboards['digest']
>>> len(digestq.files)
1

>>> from mailman.testing.helpers import get_queue_messages
>>> entry = get_queue_messages('digest')[0]

The marker message is empty.

>>> print(entry.msg.as_string())

But the message metadata has a reference to the digest file.

>>> dump_msgdata(entry.msgdata)
_parsemsg : False
digest_number: 1
digest_path : .../lists/test@example.com/digest.1.1.mmdf
listid : test.example.com
version : 3
volume : 1

There are 4 messages in the digest.

>>> from mailman.utilities.mailbox import Mailbox
>>> sum(1 for item in Mailbox(entry.msgdata['digest_path']))
4

When the runner runs, it processes the digest mailbox, crafting both the plain
text (RFC 1153) digest and the MIME digest.

>>> from mailman.runners.digest import DigestRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> runner = make_testable_runner(DigestRunner)
>>> runner.run()

If there are no members receiving digests, none are sent.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
0

Once some users are subscribed and receiving digests, the digest runner places
both digests into the virgin queue for final delivery.

>>> from mailman.testing.helpers import subscribe
>>> from mailman.interfaces.member import DeliveryMode

>>> anne = subscribe(mlist, 'Anne')
>>> anne.preferences.delivery_mode = DeliveryMode.mime_digests
>>> bart = subscribe(mlist, 'Bart')
>>> bart.preferences.delivery_mode = DeliveryMode.plaintext_digests

>>> fill_digest()
>>> runner.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
2

Anne and Bart unsubscribe from the mailing list.

>>> anne.unsubscribe()
>>> bart.unsubscribe()

The MIME digest is a multipart, and the RFC 1153 digest is the other one.

>>> def mime_rfc1153(messages):
... if messages[0].msg.is_multipart():
... return messages[0], messages[1]
... return messages[1], messages[0]

>>> mime, rfc1153 = mime_rfc1153(messages)

The MIME digest has lots of good stuff, all contained in the multipart.

>>> print(mime.msg.as_string())
Content-Type: multipart/mixed; boundary="===============...=="
MIME-Version: 1.0
From: test-request@example.com
Subject: Test Digest, Vol 1, Issue 2
To: test@example.com
Reply-To: test@example.com
Date: ...
Message-ID: ...
<BLANKLINE>
--===============...==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Description: Test Digest, Vol 1, Issue 2
<BLANKLINE>
Send Test mailing list submissions to
 test@example.com
<BLANKLINE>
To subscribe or unsubscribe via the World Wide Web, visit
 http://lists.example.com/listinfo/test@example.com
or, via email, send a message with subject or body 'help' to
 test-request@example.com
<BLANKLINE>
You can reach the person managing the list at
 test-owner@example.com
<BLANKLINE>
When replying, please edit your Subject line so it is more specific
than "Re: Contents of Test digest..."
<BLANKLINE>
--===============...==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Description: Today's Topics (4 messages)
<BLANKLINE>
Today's Topics:
<BLANKLINE>
 1. Test message 1 (aperson@example.com)
 2. Test message 2 (aperson@example.com)
 3. Test message 3 (aperson@example.com)
 4. Test message 4 (aperson@example.com)
<BLANKLINE>
--===============...==
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: xtest@example.com
Subject: Test message 1
List-Post: <test@example.com>
<BLANKLINE>
Here is message 1
<BLANKLINE>
--===============...==
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: xtest@example.com
Subject: Test message 2
List-Post: <test@example.com>
<BLANKLINE>
Here is message 2
<BLANKLINE>
--===============...==
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: xtest@example.com
Subject: Test message 3
List-Post: <test@example.com>
<BLANKLINE>
Here is message 3
<BLANKLINE>
--===============...==
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: xtest@example.com
Subject: Test message 4
List-Post: <test@example.com>
<BLANKLINE>
Here is message 4
<BLANKLINE>
--===============...==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Description: Digest Footer
<BLANKLINE>

Test mailing list
test@example.com
http://lists.example.com/listinfo/test@example.com
<BLANKLINE>
--===============...==--

The RFC 1153 contains the digest in a single plain text message.

>>> print(rfc1153.msg.as_string())
From: test-request@example.com
Subject: Test Digest, Vol 1, Issue 2
To: test@example.com
Reply-To: test@example.com
Date: ...
Message-ID: ...
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
<BLANKLINE>
Send Test mailing list submissions to
 test@example.com
<BLANKLINE>
To subscribe or unsubscribe via the World Wide Web, visit
 http://lists.example.com/listinfo/test@example.com
or, via email, send a message with subject or body 'help' to
 test-request@example.com
<BLANKLINE>
You can reach the person managing the list at
 test-owner@example.com
<BLANKLINE>
When replying, please edit your Subject line so it is more specific
than "Re: Contents of Test digest..."
<BLANKLINE>
Today's Topics:
<BLANKLINE>
 1. Test message 1 (aperson@example.com)
 2. Test message 2 (aperson@example.com)
 3. Test message 3 (aperson@example.com)
 4. Test message 4 (aperson@example.com)
<BLANKLINE>
<BLANKLINE>
--
<BLANKLINE>
From: aperson@example.com
Subject: Test message 1
To: xtest@example.com
<BLANKLINE>
Here is message 1
<BLANKLINE>

<BLANKLINE>
From: aperson@example.com
Subject: Test message 2
To: xtest@example.com
<BLANKLINE>
Here is message 2
<BLANKLINE>

<BLANKLINE>
From: aperson@example.com
Subject: Test message 3
To: xtest@example.com
<BLANKLINE>
Here is message 3
<BLANKLINE>

<BLANKLINE>
From: aperson@example.com
Subject: Test message 4
To: xtest@example.com
<BLANKLINE>
Here is message 4
<BLANKLINE>

<BLANKLINE>
Subject: Digest Footer
<BLANKLINE>

Test mailing list
test@example.com
http://lists.example.com/listinfo/test@example.com
<BLANKLINE>
<BLANKLINE>

<BLANKLINE>
End of Test Digest, Vol 1, Issue 2

<BLANKLINE>

Digest delivery

A mailing list’s members can choose to receive normal delivery, plain text
digests, or MIME digests.

>>> len(get_queue_messages('virgin'))
0

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> from mailman.interfaces.member import DeliveryMode, MemberRole
>>> def subscribe(email, mode):
... address = user_manager.create_address(email)
... member = mlist.subscribe(address, MemberRole.member)
... member.preferences.delivery_mode = mode
... return member

Two regular delivery members subscribe to the mailing list.

>>> member_1 = subscribe('uperson@example.com', DeliveryMode.regular)
>>> member_2 = subscribe('vperson@example.com', DeliveryMode.regular)

Two MIME digest members subscribe to the mailing list.

>>> member_3 = subscribe('wperson@example.com', DeliveryMode.mime_digests)
>>> member_4 = subscribe('xperson@example.com', DeliveryMode.mime_digests)

One RFC 1153 digest member subscribes to the mailing list.

>>> member_5 = subscribe(
... 'yperson@example.com', DeliveryMode.plaintext_digests)
>>> member_6 = subscribe(
... 'zperson@example.com', DeliveryMode.plaintext_digests)

When a digest gets sent, the appropriate recipient list is chosen.

>>> mlist.preferred_language = 'en'
>>> mlist.digest_size_threshold = 0.5
>>> fill_digest()
>>> runner.run()

The digests are sitting in the virgin queue. One of them is the MIME digest
and the other is the RFC 1153 digest.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
2

>>> mime, rfc1153 = mime_rfc1153(messages)

Only wperson and xperson get the MIME digests.

>>> sorted(mime.msgdata['recipients'])
['wperson@example.com', 'xperson@example.com']

Only yperson and zperson get the RFC 1153 digests.

>>> sorted(rfc1153.msgdata['recipients'])
['yperson@example.com', 'zperson@example.com']

Now uperson decides that they would like to start receiving digests too.

>>> member_1.preferences.delivery_mode = DeliveryMode.mime_digests
>>> fill_digest()
>>> runner.run()

>>> messages = get_queue_messages('virgin')
>>> len(messages)
2

>>> mime, rfc1153 = mime_rfc1153(messages)
>>> sorted(mime.msgdata['recipients'])
['uperson@example.com', 'wperson@example.com', 'xperson@example.com']

>>> sorted(rfc1153.msgdata['recipients'])
['yperson@example.com', 'zperson@example.com']

At this point, both uperson and wperson decide that they’d rather receive
regular deliveries instead of digests. uperson would like to get any last
digest that may be sent so that she doesn’t miss anything. wperson does care
as much and does not want to receive one last digest.

>>> mlist.send_one_last_digest_to(
... member_1.address, member_1.preferences.delivery_mode)

>>> member_1.preferences.delivery_mode = DeliveryMode.regular
>>> member_3.preferences.delivery_mode = DeliveryMode.regular

>>> fill_digest()
>>> runner.run()

>>> messages = get_queue_messages('virgin')
>>> mime, rfc1153 = mime_rfc1153(messages)
>>> sorted(mime.msgdata['recipients'])
['uperson@example.com', 'xperson@example.com']

>>> sorted(rfc1153.msgdata['recipients'])
['yperson@example.com', 'zperson@example.com']

Since uperson has received their last digest, they will not get any more of
them.

>>> fill_digest()
>>> runner.run()

>>> messages = get_queue_messages('virgin')
>>> len(messages)
2

>>> mime, rfc1153 = mime_rfc1153(messages)
>>> sorted(mime.msgdata['recipients'])
['xperson@example.com']

>>> sorted(rfc1153.msgdata['recipients'])
['yperson@example.com', 'zperson@example.com']

The incoming runner

This runner’s sole purpose in life is to decide the disposition of the
message. It can either be accepted for delivery, rejected (i.e. bounced),
held for moderator approval, or discarded.

The runner operates by processing chains on a message/metadata pair in the
context of a mailing list. Each mailing list has a default chain for messages
posted to the mailing list. This chain is processed with the message
eventually ending up in one of the four disposition states described above.

>>> mlist = create_list('test@example.com')
>>> print(mlist.posting_chain)
default-posting-chain

Sender addresses

The incoming runner ensures that the sender addresses on the message are
registered with the system. This is used for determining nonmember posting
privileges. The addresses will not be linked to a user and will be
unverified, so if the real user comes along later and claims the address, it
will be linked to their user account (and must be verified).

While configurable, the sender addresses by default are those named in the
From:, Sender:, and Reply-To: headers, as well as the envelope sender
(though we won’t worry about the latter).

>>> msg = message_from_string("""\
... From: zperson@example.com
... Reply-To: yperson@example.com
... Sender: xperson@example.com
... To: test@example.com
... Subject: This is spiced ham
... Message-ID: <bogus>
...
... """)

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)
>>> print(user_manager.get_address('xperson@example.com'))
None
>>> print(user_manager.get_address('yperson@example.com'))
None
>>> print(user_manager.get_address('zperson@example.com'))
None

Inject the message into the incoming queue, similar to the way the upstream
mail server normally would.

>>> from mailman.app.inject import inject_message
>>> filebase = inject_message(mlist, msg)

The incoming runner runs until it is empty.

>>> from mailman.runners.incoming import IncomingRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> incoming = make_testable_runner(IncomingRunner, 'in')
>>> incoming.run()

And now the addresses are known to the system. As mentioned above, they are
not linked to a user and are unverified.

>>> for localpart in ('xperson', 'yperson', 'zperson'):
... email = '{0}@example.com'.format(localpart)
... address = user_manager.get_address(email)
... print('{0}; verified? {1}; user? {2}'.format(
... address.email,
... ('No' if address.verified_on is None else 'Yes'),
... user_manager.get_user(email)))
xperson@example.com; verified? No; user? None
yperson@example.com; verified? No; user? None
zperson@example.com; verified? No; user? None

Accepted messages

We have a message that is going to be sent to the mailing list. Once Anne is
a member of the mailing list, this message is so perfectly fine for posting
that it will be accepted and forward to the pipeline queue.

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist, 'Anne')
<Member: Anne Person <aperson@example.com> on test@example.com
 as MemberRole.member>

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... First post!
... """)

Inject the message into the incoming queue and run until the queue is empty.

>>> filebase = inject_message(mlist, msg)
>>> incoming.run()

There are no messages left in the incoming queue.

>>> get_queue_messages('in')
[]

Now the message is in the pipeline queue.

>>> messages = get_queue_messages('pipeline')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
Date: ...
X-Mailman-Rule-Misses: approved; emergency; loop; member-moderation;
 administrivia; implicit-dest; max-recipients; max-size;
 news-moderation; no-subject; suspicious-header; nonmember-moderation
<BLANKLINE>
First post!
<BLANKLINE>
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
envsender : noreply@example.com
...

Held messages

The list moderator sets the emergency flag on the mailing list. The built-in
chain will now hold all posted messages, so nothing will show up in the
pipeline queue.

>>> from mailman.interfaces.chain import ChainEvent
>>> def on_chain(event):
... if isinstance(event, ChainEvent):
... print(event)
... print(event.chain)
... print('From: {0}\nTo: {1}\nMessage-ID: {2}'.format(
... event.msg['from'], event.msg['to'],
... event.msg['message-id']))

>>> mlist.emergency = True

>>> from mailman.testing.helpers import event_subscribers
>>> with event_subscribers(on_chain):
... filebase = inject_message(mlist, msg)
... incoming.run()
<mailman.interfaces.chain.HoldEvent ...>
<mailman.chains.hold.HoldChain ...>
From: aperson@example.com
To: test@example.com
Message-ID: <first>

>>> mlist.emergency = False

Discarded messages

Another possibility is that the message would get immediately discarded. The
built-in chain does not have such a disposition by default, so let’s craft a
new chain and set it as the mailing list’s start chain.

>>> from mailman.chains.base import Chain, Link
>>> from mailman.interfaces.chain import LinkAction
>>> def make_chain(name, target_chain):
... truth_rule = config.rules['truth']
... target_chain = config.chains[target_chain]
... test_chain = Chain(name, 'Testing {0}'.format(target_chain))
... config.chains[test_chain.name] = test_chain
... link = Link(truth_rule, LinkAction.jump, target_chain)
... test_chain.append_link(link)
... return test_chain

>>> test_chain = make_chain('always-discard', 'discard')
>>> mlist.posting_chain = test_chain.name

>>> msg.replace_header('message-id', '<second>')
>>> with event_subscribers(on_chain):
... filebase = inject_message(mlist, msg)
... incoming.run()
<mailman.interfaces.chain.DiscardEvent ...>
<mailman.chains.discard.DiscardChain ...>
From: aperson@example.com
To: test@example.com
Message-ID: <second>

>>> del config.chains[test_chain.name]

Rejected messages

Similar to discarded messages, a message can be rejected, or bounced back to
the original sender. Again, the built-in chain doesn’t support this so we’ll
just create a new chain that does.

>>> test_chain = make_chain('always-reject', 'reject')
>>> mlist.posting_chain = test_chain.name

>>> msg.replace_header('message-id', '<third>')
>>> with event_subscribers(on_chain):
... filebase = inject_message(mlist, msg)
... incoming.run()
<mailman.interfaces.chain.RejectEvent ...>
<mailman.chains.reject.RejectChain ...>
From: aperson@example.com
To: test@example.com
Message-ID: <third>

The rejection message is sitting in the virgin queue waiting to be delivered
to the original sender.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
Subject: My first post
From: test-owner@example.com
To: aperson@example.com
...
<BLANKLINE>
--===============...
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
<BLANKLINE>
[No bounce details are available]
--===============...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <third>
Date: ...
<BLANKLINE>
First post!
<BLANKLINE>
--===============...

>>> del config.chains['always-reject']

LTMP server

Mailman can accept messages via LMTP (RFC 2033). Most modern mail servers
support LMTP local delivery, so this is a very portable way to connect Mailman
with your mail server.

Our LMTP server is fairly simple though; all it does is make sure that the
message is destined for a valid endpoint, e.g. mylist-join@example.com,
that the message bytes can be parsed into a message object, and that the
message has a Message-ID header.

Let’s start a testable LMTP runner.

>>> from mailman.testing import helpers
>>> master = helpers.TestableMaster()
>>> master.start('lmtp')

It also helps to have a nice LMTP client.

>>> lmtp = helpers.get_lmtp_client()
(220, b'... GNU Mailman LMTP runner 1.1')
>>> lmtp.lhlo('remote.example.org')
(250, ...)

Posting address

Once the mailing list is created, the posting address is valid, and messages
can be sent to the list.

>>> create_list('mylist@example.com')
<mailing list "mylist@example.com" at ...>

>>> transaction.commit()
>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist@example.com'], """\
... From: anne.person@example.com
... To: mylist@example.com
... Subject: An interesting message
... Message-ID: <badger>
...
... This is an interesting message.
... """)
{}

Since the message itself is valid, it gets parsed and lands in the incoming
queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('in')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
From: anne.person@example.com
To: mylist@example.com
Subject: An interesting message
Message-ID: <badger>
X-Message-ID-Hash: JYMZWSQ4IC2JPKK7ZUONRFRVC4ZYJGKJ
X-MailFrom: anne.person@example.com
<BLANKLINE>
This is an interesting message.
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
to_list : True
version : ...

Sub-addresses

The LMTP server understands each of the list’s sub-addreses, such as -join,
-leave, -request and so on. The message is accepted if posted to a valid
sub-address.

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-request@example.com'], """\
... From: anne.person@example.com
... To: mylist-request@example.com
... Subject: Help
... Message-ID: <dog>
...
... Please help me.
... """)
{}

Request subaddress

Depending on the subaddress, there is a message in the appropriate queue for
later processing. For example, all -request messages are put into the
command queue for processing.

>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
From: anne.person@example.com
To: mylist-request@example.com
Subject: Help
Message-ID: <dog>
X-Message-ID-Hash: 4SKREUSPI62BHDMFBSOZ3BMXFETSQHNA
X-MailFrom: anne.person@example.com
<BLANKLINE>
Please help me.
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : request
version : ...

Bounce processor

A message to the -bounces address goes to the bounce processor.

>>> lmtp.sendmail(
... 'mail-daemon@example.com',
... ['mylist-bounces@example.com'], """\
... From: mail-daemon@example.com
... To: mylist-bounces@example.com
... Subject: A bounce
... Message-ID: <elephant>
...
... Bouncy bouncy.
... """)
{}
>>> messages = get_queue_messages('bounces')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : bounces
version : ...

Command processor

Confirmation messages go to the command processor…

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-confirm@example.com'], """\
... From: anne.person@example.com
... To: mylist-confirm@example.com
... Subject: A bounce
... Message-ID: <falcon>
...
... confirm 123
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : confirm
version : ...

…as do join messages…

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-join@example.com'], """\
... From: anne.person@example.com
... To: mylist-join@example.com
... Message-ID: <giraffe>
...
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : join
version : ...

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-subscribe@example.com'], """\
... From: anne.person@example.com
... To: mylist-subscribe@example.com
... Message-ID: <hippopotamus>
...
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : join
version : ...

…and leave messages.

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-leave@example.com'], """\
... From: anne.person@example.com
... To: mylist-leave@example.com
... Message-ID: <iguana>
...
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : leave
version : ...

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-unsubscribe@example.com'], """\
... From: anne.person@example.com
... To: mylist-unsubscribe@example.com
... Message-ID: <jackal>
...
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : leave
version : ...

Incoming processor

Messages to the -owner address also go to the incoming processor.

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-owner@example.com'], """\
... From: anne.person@example.com
... To: mylist-owner@example.com
... Message-ID: <kangaroo>
...
... """)
{}
>>> messages = get_queue_messages('in')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
envsender : noreply@example.com
listid : mylist.example.com
original_size: ...
subaddress : owner
to_owner : True
version : ...

The NNTP runner

The NNTP runner gateways mailing list messages to an NNTP newsgroup.

>>> mlist = create_list('test@example.com')
>>> mlist.linked_newsgroup = 'comp.lang.python'

Get a handle on the NNTP server, which we’ll use later to verify the posted
messages.

>>> from mailman.testing.helpers import get_nntp_server
>>> nntpd = get_nntp_server(cleanups)

A message gets posted to the mailing list. It may contain some headers which
are prohibited by NNTP servers such as INN.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... NNTP-Posting-Host: news.example.com
... NNTP-Posting-Date: today
... X-Trace: blah blah
... X-Complaints-To: abuse@dom.ain
... Xref: blah blah
... Xref: blah blah
... Date-Received: yesterday
... Posted: tomorrow
... Posting-Version: 99.99
... Relay-Version: 88.88
... Received: blah blah
...
... A message
... """)

The message gets copied to the NNTP queue for preparation and posting.

>>> filebase = config.switchboards['nntp'].enqueue(
... msg, listid='test.example.com')
>>> from mailman.testing.helpers import make_testable_runner
>>> from mailman.runners.nntp import NNTPRunner
>>> runner = make_testable_runner(NNTPRunner, 'nntp')
>>> runner.run()

The message was successfully posted the NNTP server.

>>> print(nntpd.get_message().as_string())
From: aperson@example.com
To: test@example.com
Newsgroups: comp.lang.python
Message-ID: ...
Lines: 1
<BLANKLINE>
A message
<BLANKLINE>

Outgoing runner

The outgoing runner is the process that delivers messages to the directly
upstream SMTP server. It is this upstream SMTP server that performs final
delivery to the intended recipients.

Messages that appear in the outgoing queue are processed individually through
a delivery module, essentially a pluggable interface for determining how the
recipient set will be batched, whether messages will be personalized and
VERP’d, etc. The outgoing runner doesn’t itself support retrying but it can
move messages to the ‘retry queue’ for handling delivery failures.

>>> mlist = create_list('test@example.com')

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist, 'Anne')
<Member: Anne Person <aperson@example.com>
 on test@example.com as MemberRole.member>

>>> subscribe(mlist, 'Bart')
<Member: Bart Person <bperson@example.com>
 on test@example.com as MemberRole.member>

>>> subscribe(mlist, 'Cris')
<Member: Cris Person <cperson@example.com>
 on test@example.com as MemberRole.member>

Normally, messages would show up in the outgoing queue after the message has
been processed by the rule set and pipeline. But we can simulate that here by
injecting a message directly into the outgoing queue. First though, we must
call the member-recipients handler so that the message metadata will be
populated with the list of addresses to deliver the message to.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... First post!
... """)

>>> msgdata = {}
>>> handler = config.handlers['member-recipients']
>>> handler.process(mlist, msg, msgdata)
>>> outgoing_queue = config.switchboards['out']

The to-outgoing handler populates the message metadata with the
destination mailing list name. Simulate that here too.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... tolist=True,
... listid=mlist.list_id)

Running the outgoing runner processes the message, delivering it to the
upstream SMTP.

>>> from mailman.runners.outgoing import OutgoingRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> outgoing = make_testable_runner(OutgoingRunner, 'out')
>>> outgoing.run()

Every recipient got the same copy of the message.

>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> print(messages[0].as_string())
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com, bperson@example.com, cperson@example.com

First post!

Personalization

Mailman supports sending individual messages to each recipient by
personalizing delivery. This increases the bandwidth between Mailman and the
upstream mail server, and between the upstream mail server and the remote
recipient mail servers. The benefit is that personalization provides for a
much better user experience, because the messages can be tailored for each
recipient.

>>> from mailman.interfaces.mailinglist import Personalization
>>> mlist.personalize = Personalization.individual
>>> transaction.commit()

Now when we send the message, our mail server will get three copies instead of
just one.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

Since we’ve done no other configuration, the only difference in the messages
is the recipient address. Specifically, the Sender header is the same for all
recipients.

>>> from operator import itemgetter
>>> def show_headers(messages):
... for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message['X-RcptTo'], message['X-MailFrom'])

>>> show_headers(messages)
aperson@example.com test-bounces@example.com
bperson@example.com test-bounces@example.com
cperson@example.com test-bounces@example.com

VERP

An even more interesting personalization opportunity arises if VERP is
enabled. Here, Mailman takes advantage of the fact that it’s sending
individualized messages anyway, so it also encodes the recipients address in
the Sender header.

Forcing VERP

A handler can force VERP by setting the verp key in the message metadata.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... verp=True,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

VERP personalized deliveries

The site administrator can enable VERP whenever messages are personalized.

>>> config.push('verp', """
... [mta]
... verp_personalized_deliveries: yes
... """)

Again, we get three individual messages, with VERP’d Sender headers.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

>>> config.pop('verp')
>>> mlist.personalize = Personalization.none
>>> transaction.commit()

VERP every once in a while

Perhaps personalization is too much of an overhead, but the list owners would
still like to occasionally get the benefits of VERP. The site administrator
can enable occasional VERPing of messages every so often, by setting a
delivery interval. Every N non-personalized deliveries turns on VERP for just
the next one.

>>> config.push('verp occasionally', """
... [mta]
... verp_delivery_interval: 3
... """)

Reset the list's post_id, which is used to calculate the intervals.
>>> mlist.post_id = 1
>>> transaction.commit()

The first message is sent to the list, and it is neither personalized nor
VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

Perform post-delivery bookkeeping.
>>> after = config.handlers['after-delivery']
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

The second message sent to the list is also not VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

The third message though is VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

The next one is back to bulk delivery.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

>>> config.pop('verp occasionally')

VERP every time

If the site administrator wants to enable VERP for every delivery, even if no
personalization is going on, they can set the interval to 1.

>>> config.push('always verp', """
... [mta]
... verp_delivery_interval: 1
... """)

Reset the list's post_id, which is used to calculate the intervals.
>>> mlist.post_id = 1
>>> transaction.commit()

The first message is VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

As is the second message.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

And the third message.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

>>> config.pop('always verp')

Never VERP

Similarly, the site administrator can disable occasional VERP’ing of
non-personalized messages by setting the interval to zero.

>>> config.push('never verp', """
... [mta]
... verp_delivery_interval: 0
... """)

Reset the list's post_id, which is used to calculate the intervals.
>>> mlist.post_id = 1
>>> transaction.commit()

Neither the first message…

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

…nor the second message is VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

REST server

Mailman is controllable through an administrative REST [http://en.wikipedia.org/wiki/REST] HTTP server.

>>> from mailman.testing import helpers
>>> master = helpers.TestableMaster(helpers.wait_for_webservice)
>>> master.start('rest')

The RESTful server can be used to access basic version information.

>>> dump_json('http://localhost:9001/3.0/system')
http_etag: "..."
mailman_version: GNU Mailman 3.0... (...)
python_version: ...
self_link: http://localhost:9001/3.0/system/versions

Clean up

>>> master.stop()

Moderation

Posts by members and nonmembers are subject to moderation checks during
incoming processing. Different situations can cause such posts to be held for
moderator approval.

>>> mlist = create_list('test@example.com')

Members and nonmembers have a moderation action which can shortcut the
normal moderation checks. The built-in chain does just a few checks first,
such as seeing if the message has a matching Approved: header, or if the
emergency flag has been set on the mailing list, or whether a mail loop has
been detected.

After those, the moderation action for the sender is checked. Members
generally have a defer action, meaning the normal moderation checks are
done, but it is also common for first-time posters to have a hold action,
meaning that their messages are held for moderator approval for a while.

Nonmembers almost always have a hold action, though some mailing lists may
choose to set this default action to discard, meaning their posts would be
immediately thrown away.

Member moderation

Posts by list members are moderated if the member’s moderation action is not
deferred. The default setting for the moderation action of new members is
determined by the mailing list’s settings. By default, a mailing list is not
set to moderate new member postings.

>>> from mailman.testing.helpers import subscribe
>>> member = subscribe(mlist, 'Anne', email='anne@example.com')
>>> member
<Member: Anne Person <anne@example.com> on test@example.com
 as MemberRole.member>
>>> print(member.moderation_action)
Action.defer

In order to find out whether the message is held or accepted, we can subscribe
to Zope events that are triggered on each case.

>>> from mailman.interfaces.chain import ChainEvent
>>> def on_chain(event):
... if isinstance(event, ChainEvent):
... print(event)
... print(event.chain)
... print('Subject:', event.msg['subject'])
... print('Hits:')
... for hit in event.msgdata.get('rule_hits', []):
... print(' ', hit)
... print('Misses:')
... for miss in event.msgdata.get('rule_misses', []):
... print(' ', miss)

Anne’s post to the mailing list runs through the incoming runner’s default
built-in chain. No rules hit and so the message is accepted.

>>> msg = message_from_string("""\
... From: anne@example.com
... To: test@example.com
... Subject: aardvark
...
... This is a test.
... """)

>>> from mailman.core.chains import process
>>> from mailman.testing.helpers import event_subscribers
>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.AcceptEvent ...>
<mailman.chains.accept.AcceptChain ...>
Subject: aardvark
Hits:
Misses:
 approved
 emergency
 loop
 member-moderation
 administrivia
 implicit-dest
 max-recipients
 max-size
 news-moderation
 no-subject
 suspicious-header
 nonmember-moderation

However, when Anne’s moderation action is set to hold, her post is held for
moderator approval.

>>> from mailman.interfaces.action import Action
>>> member.moderation_action = Action.hold

>>> msg = message_from_string("""\
... From: anne@example.com
... To: test@example.com
... Subject: badger
...
... This is a test.
... """)

>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.HoldEvent ...>
<mailman.chains.hold.HoldChain ...>
Subject: badger
Hits:
 member-moderation
Misses:
 approved
 emergency
 loop

The list’s member moderation action can also be set to discard…

>>> member.moderation_action = Action.discard

>>> msg = message_from_string("""\
... From: anne@example.com
... To: test@example.com
... Subject: cougar
...
... This is a test.
... """)

>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.DiscardEvent ...>
<mailman.chains.discard.DiscardChain ...>
Subject: cougar
Hits:
 member-moderation
Misses:
 approved
 emergency
 loop

… or reject.

>>> member.moderation_action = Action.reject

>>> msg = message_from_string("""\
... From: anne@example.com
... To: test@example.com
... Subject: dingo
...
... This is a test.
... """)

>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.RejectEvent ...>
<mailman.chains.reject.RejectChain ...>
Subject: dingo
Hits:
 member-moderation
Misses:
 approved
 emergency
 loop

Nonmembers

Registered nonmembers are handled very similarly to members, the main
difference being that they usually have a default moderation action. This is
how the incoming runner adds sender addresses as nonmembers.

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)
>>> address = user_manager.create_address('bart@example.com')
>>> address
<Address: bart@example.com [not verified] at ...>

When the moderation rule runs on a message from this sender, this address will
be registered as a nonmember of the mailing list, and it will be held for
moderator approval.

>>> msg = message_from_string("""\
... From: bart@example.com
... To: test@example.com
... Subject: elephant
...
... """)

>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.HoldEvent ...>
<mailman.chains.hold.HoldChain ...>
Subject: elephant
Hits:
 nonmember-moderation
Misses:
 approved
 emergency
 loop
 member-moderation
 administrivia
 implicit-dest
 max-recipients
 max-size
 news-moderation
 no-subject
 suspicious-header

>>> nonmember = mlist.nonmembers.get_member('bart@example.com')
>>> nonmember
<Member: bart@example.com on test@example.com as MemberRole.nonmember>
>>> print(nonmember.moderation_action)
Action.hold

Administrivia

The administrivia rule matches when the message contains some common email
commands in the Subject: header or first few lines of the payload. This
is used to catch messages posted to the list which should have been sent to
the -request robot address.

>>> mlist = create_list('_xtest@example.com')
>>> mlist.administrivia = True
>>> rule = config.rules['administrivia']
>>> print(rule.name)
administrivia

For example, if the Subject: header contains the word unsubscribe, the
rule matches.

>>> msg_1 = message_from_string("""\
... From: aperson@example.com
... Subject: unsubscribe
...
... """)
>>> rule.check(mlist, msg_1, {})
True

Similarly, if the body of the message contains the word subscribe in the
first few lines of text, the rule matches.

>>> msg_2 = message_from_string("""\
... From: aperson@example.com
... Subject: I wish to join your list
...
... subscribe
... """)
>>> rule.check(mlist, msg_2, {})
True

In both cases, administrivia checking can be disabled.

>>> mlist.administrivia = False
>>> rule.check(mlist, msg_1, {})
False
>>> rule.check(mlist, msg_2, {})
False

To make the administrivia heuristics a little more robust, the rule actually
looks for a minimum and maximum number of arguments, so that it really does
seem like a mis-addressed email command. In this case, the confirm
command requires at least one argument. We don’t give that here so the rule
will not match.

>>> mlist.administrivia = True
>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: confirm
...
... """)
>>> rule.check(mlist, msg, {})
False

But a real confirm message will match.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: confirm 12345
...
... """)
>>> rule.check(mlist, msg, {})
True

We don’t show all the other possible email commands, but you get the idea.

Non-administrivia

Of course, messages that don’t contain administrivia, don’t match the rule.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: examine
...
... persuade
... """)
>>> rule.check(mlist, msg, {})
False

Also, only text/plain parts are checked for administrivia, so any email
commands in other content type subparts are ignored.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: some administrivia
... Content-Type: text/x-special
...
... subscribe
... """)
>>> rule.check(mlist, msg, {})
False

Pre-approved postings

Messages can contain a pre-approval, which is used to bypass the normal
message approval queue. This has several use cases:

	A list administrator can send an emergency message to the mailing list
from an unregistered address, for example if they are away from their
normal email.

	An automated script can be programmed to send a message to an otherwise
moderated list.

In order to support this, a mailing list can be given a moderator password
which is shared among all the administrators.

>>> mlist = create_list('test@example.com')

This password will not be stored in clear text, so it must be hashed using the
configured hash protocol.

>>> mlist.moderator_password = config.password_context.encrypt(
... 'super secret')

The approved rule determines whether the message contains the proper
approval or not.

>>> rule = config.rules['approved']
>>> print(rule.name)
approved

No approval

The preferred header to check for approval is Approved:. If the message
does not have this header, the rule will not match.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... An important message.
... """)
>>> rule.check(mlist, msg, {})
False

If the rule has an Approved header, but the value of this header does not
match the moderator password, the rule will not match. Note that the header
must contain the clear text version of the password.

>>> msg['Approved'] = 'not the password'
>>> rule.check(mlist, msg, {})
False

The message is approved

By adding an Approved header with a matching password, the rule will
match.

>>> del msg['approved']
>>> msg['Approved'] = 'super secret'
>>> rule.check(mlist, msg, {})
True

Alternative headers

Other headers can be used to stash the moderator password. This rule also
checks the Approve header.

>>> del msg['approved']
>>> msg['Approve'] = 'super secret'
>>> rule.check(mlist, msg, {})
True

Similarly, an X-Approved header can be used.

>>> del msg['approve']
>>> msg['X-Approved'] = 'super secret'
>>> rule.check(mlist, msg, {})
True

And finally, an X-Approve header can be used.

>>> del msg['x-approved']
>>> msg['X-Approve'] = 'super secret'
>>> rule.check(mlist, msg, {})
True

Removal of header

Technically, rules should not have side-effects, however this rule does remove
the Approved header (LP: #973790) when it matches.

>>> del msg['x-approved']
>>> msg['Approved'] = 'super secret'
>>> rule.check(mlist, msg, {})
True
>>> print(msg['approved'])
None

It also removes the header when it doesn’t match. If the rule didn’t do this,
then the mailing list could be probed for its moderator password.

>>> msg['Approved'] = 'not the password'
>>> rule.check(mlist, msg, {})
False
>>> print(msg['approved'])
None

Using a pseudo-header

Mail programs have varying degrees to which they support custom headers like
Approved:. For this reason, Mailman also supports using a
pseudo-header, which is really just the first non-whitespace line in the
payload of the message. If this pseudo-header looks like a matching
Approved: header, the message is similarly allowed to pass.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... Approved: super secret
... An important message.
... """)
>>> rule.check(mlist, msg, {})
True

The pseudo-header is always removed from the body of plain text messages.

>>> print(msg.as_string())
From: aperson@example.com
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
<BLANKLINE>
An important message.
<BLANKLINE>

As before, a mismatch in the pseudo-header does not approve the message, but
the pseudo-header line is still removed.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... Approved: not the password
... An important message.
... """)
>>> rule.check(mlist, msg, {})
False

>>> print(msg.as_string())
From: aperson@example.com
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"

An important message.

MIME multipart support

Mailman searches for the pseudo-header as the first non-whitespace line in the
first text/plain message part of the message. This allows the feature to
be used with MIME documents.

>>> msg = message_from_string("""\
... From: aperson@example.com
... MIME-Version: 1.0
... Content-Type: multipart/mixed; boundary="AAA"
...
... --AAA
... Content-Type: application/x-ignore
...
... Approved: not the password
... The above line will be ignored.
...
... --AAA
... Content-Type: text/plain
...
... Approved: super secret
... An important message.
... --AAA--
... """)
>>> rule.check(mlist, msg, {})
True

Like before, the pseudo-header is removed, but only from the text parts.

>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="AAA"
<BLANKLINE>
--AAA
Content-Type: application/x-ignore
<BLANKLINE>
Approved: not the password
The above line will be ignored.
<BLANKLINE>
--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
<BLANKLINE>
An important message.
--AAA--
<BLANKLINE>

If the correct password is in the non-text/plain part, it is ignored.

>>> msg = message_from_string("""\
... From: aperson@example.com
... MIME-Version: 1.0
... Content-Type: multipart/mixed; boundary="AAA"
...
... --AAA
... Content-Type: application/x-ignore
...
... Approved: super secret
... The above line will be ignored.
...
... --AAA
... Content-Type: text/plain
...
... Approved: not the password
... An important message.
... --AAA--
... """)
>>> rule.check(mlist, msg, {})
False

Pseudo-header is still stripped, but only from the text/plain part.

>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="AAA"
<BLANKLINE>
--AAA
Content-Type: application/x-ignore
<BLANKLINE>
Approved: super secret
The above line will be ignored.
<BLANKLINE>
--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
<BLANKLINE>
An important message.
--AAA--

Stripping text/html parts

Because some mail programs will include both a text/plain part and a
text/html alternative, the rule must search the alternatives and strip
anything that looks like an Approved: header.

>>> msg = message_from_string("""\
... From: aperson@example.com
... MIME-Version: 1.0
... Content-Type: multipart/mixed; boundary="AAA"
...
... --AAA
... Content-Type: text/html
...
... <html>
... <head></head>
... <body>
... Approved: super secret
... <p>The above line will be ignored.
... </body>
... </html>
...
... --AAA
... Content-Type: text/plain
...
... Approved: super secret
... An important message.
... --AAA--
... """)
>>> rule.check(mlist, msg, {})
True

And the header-like text in the text/html part was stripped.

>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="AAA"
<BLANKLINE>
--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/html; charset="us-ascii"
<BLANKLINE>
<html>
<head></head>
<body>

<p>The above line will be ignored.
</body>
</html>
<BLANKLINE>
--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
<BLANKLINE>
An important message.
--AAA--
<BLANKLINE>

This is true even if the rule does not match (i.e. the incorrect password was
given).

>>> msg = message_from_string("""\
... From: aperson@example.com
... MIME-Version: 1.0
... Content-Type: multipart/mixed; boundary="AAA"
...
... --AAA
... Content-Type: text/html
...
... <html>
... <head></head>
... <body>
... Approved: not the password
... <p>The above line will be ignored.
... </body>
... </html>
...
... --AAA
... Content-Type: text/plain
...
... Approved: not the password
... An important message.
... --AAA--
... """)
>>> rule.check(mlist, msg, {})
False

>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="AAA"

--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/html; charset="us-ascii"

<html>
<head></head>
<body>

<p>The above line will be ignored.
</body>
</html>

--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"

An important message.
--AAA--

Emergency

When the mailing list has its emergency flag set, all messages posted to the
list are held for moderator approval.

>>> mlist = create_list('test@example.com')
>>> rule = config.rules['emergency']
>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... An important message.
... """)

By default, the mailing list does not have its emergency flag set.

>>> mlist.emergency
False
>>> rule.check(mlist, msg, {})
False

The emergency rule matches if the flag is set on the mailing list.

>>> mlist.emergency = True
>>> rule.check(mlist, msg, {})
True

However, if the message metadata has a moderator_approved key set, then
even if the mailing list has its emergency flag set, the message still goes
through to the membership.

>>> rule.check(mlist, msg, dict(moderator_approved=True))
False

Header matching

Mailman can do pattern based header matching during its normal rule
processing. There is a set of site-wide default header matches specified in
the configuration file under the [antispam] section.

>>> mlist = create_list('test@example.com')

In this section, the variable header_checks contains a list of the headers
to check, and the patterns to check them against. By default, this list is
empty.

It is also possible to programmatically extend these header checks. Here,
we’ll extend the checks with a pattern that matches 4 or more stars.

>>> chain = config.chains['header-match']
>>> chain.extend('x-spam-score', '[*]{4,}')

First, if the message has no X-Spam-Score: header, the message passes
through the chain with no matches.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: Not spam
... Message-ID: <ant>
...
... This is a message.
... """)

By looking at the message metadata after chain processing, we can see that
none of the rules matched.

>>> from mailman.core.chains import process
>>> msgdata = {}
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
No rules hit
Rule misses:
 x-spam-score: [*]{4,}

The header may exist but does not match the pattern.

>>> msg['X-Spam-Score'] = '***'
>>> msgdata = {}
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
No rules hit
Rule misses:
 x-spam-score: [*]{4,}

The header may exist and match the pattern. By default, when the header
matches, it gets held for moderator approval.

>>> from mailman.interfaces.chain import ChainEvent
>>> from mailman.testing.helpers import event_subscribers
>>> def handler(event):
... if isinstance(event, ChainEvent):
... print(event.__class__.__name__,
... event.chain.name, event.msg['message-id'])

>>> del msg['x-spam-score']
>>> msg['X-Spam-Score'] = '*****'
>>> msgdata = {}
>>> with event_subscribers(handler):
... process(mlist, msg, msgdata, 'header-match')
HoldEvent hold <ant>

>>> hits_and_misses(msgdata)
Rule hits:
 x-spam-score: [*]{4,}
No rules missed

The configuration file can also specify a different final disposition for
messages that match their header checks. For example, we may just want to
discard such messages.

>>> from mailman.testing.helpers import configuration
>>> msgdata = {}
>>> with event_subscribers(handler):
... with configuration('antispam', jump_chain='discard'):
... process(mlist, msg, msgdata, 'header-match')
DiscardEvent discard <ant>

These programmatically added headers can be removed by flushing the chain.
Now, nothing with match this message.

>>> chain.flush()
>>> msgdata = {}
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
No rules hit
No rules missed

List-specific header matching

Each mailing list can also be configured with a set of header matching regular
expression rules. These are used to impose list-specific header filtering
with the same semantics as the global [antispam] section.

The list administrator wants to match not on four stars, but on three plus
signs, but only for the current mailing list.

>>> mlist.header_matches = [('x-spam-score', '[+]{3,}')]

A message with a spam score of two pluses does not match.

>>> msgdata = {}
>>> del msg['x-spam-score']
>>> msg['X-Spam-Score'] = '++'
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
No rules hit
Rule misses:
 x-spam-score: [+]{3,}

But a message with a spam score of three pluses does match. Because a message
with the previous Message-Id is already in the moderation queue, we need to
give this message a new Message-Id.

>>> msgdata = {}
>>> del msg['x-spam-score']
>>> msg['X-Spam-Score'] = '+++'
>>> del msg['message-id']
>>> msg['Message-Id'] = '<bee>'
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
Rule hits:
 x-spam-score: [+]{3,}
No rules missed

As does a message with a spam score of four pluses.

>>> msgdata = {}
>>> del msg['x-spam-score']
>>> msg['X-Spam-Score'] = '++++'
>>> del msg['message-id']
>>> msg['Message-Id'] = '<cat>'
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
Rule hits:
 x-spam-score: [+]{3,}
No rules missed

Implicit destination

The implicit-dest rule matches when the mailing list’s posting address is
not explicitly mentioned in the set of message recipients.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['implicit-dest']
>>> print(rule.name)
implicit-dest

In order to check for implicit destinations, we need to adapt the mailing list
to the appropriate interface.

>>> from mailman.interfaces.mailinglist import IAcceptableAliasSet
>>> alias_set = IAcceptableAliasSet(mlist)

This rule matches messages that have an implicit destination, meaning that the
mailing list’s posting address isn’t included in the explicit recipients.

>>> mlist.require_explicit_destination = True
>>> alias_set.clear()

>>> msg = message_from_string("""\
... From: aperson@example.org
... Subject: An implicit message
...
... """)
>>> rule.check(mlist, msg, {})
True

You can disable implicit destination checks for the mailing list.

>>> mlist.require_explicit_destination = False
>>> rule.check(mlist, msg, {})
False

Even with some recipients, if the posting address is not included, the rule
will match.

>>> mlist.require_explicit_destination = True
>>> msg['To'] = 'myfriend@example.com'
>>> rule.check(mlist, msg, {})
True

Add the posting address as a recipient and the rule will no longer match.

>>> msg['Cc'] = '_xtest@example.com'
>>> rule.check(mlist, msg, {})
False

Alternatively, if one of the acceptable aliases is in the recipients list,
then the rule will not match.

>>> del msg['cc']
>>> rule.check(mlist, msg, {})
True

>>> alias_set.add('myfriend@example.com')
>>> rule.check(mlist, msg, {})
False

A message gated from NNTP will obviously have an implicit destination. Such
gated messages will not be held for implicit destination because it’s assumed
that Mailman pulled it from the appropriate news group.

>>> rule.check(mlist, msg, dict(from_usenet=True))
False

Additional aliases can be added.

>>> alias_set.add('other@example.com')
>>> del msg['to']
>>> rule.check(mlist, msg, {})
True

>>> msg['To'] = 'other@example.com'
>>> rule.check(mlist, msg, {})
False

Aliases can be removed.

>>> alias_set.remove('other@example.com')
>>> rule.check(mlist, msg, {})
True

Aliases can also be cleared.

>>> msg['Cc'] = 'myfriend@example.com'
>>> rule.check(mlist, msg, {})
False

>>> alias_set.clear()
>>> rule.check(mlist, msg, {})
True

Alias patterns

It’s also possible to specify an alias pattern, i.e. a regular expression to
match against the recipients. For example, we can say that if there is a
recipient in the example.net domain, then the rule does not match.

>>> alias_set.add('^.*@example.net')
>>> rule.check(mlist, msg, {})
True

>>> msg['To'] = 'you@example.net'
>>> rule.check(mlist, msg, {})
False

Bad aliases

You cannot add an alias that looks like neither a pattern nor an email
address.

>>> alias_set.add('foobar')
Traceback (most recent call last):
...
ValueError: foobar

Posting loops

To avoid a posting loop, Mailman has a rule to check for the existence of an
RFC 2369 List-Post: header with the value of the list’s posting address.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['loop']
>>> print(rule.name)
loop

The header could be missing, in which case the rule does not match.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... An important message.
... """)
>>> rule.check(mlist, msg, {})
False

The header could be present, but not match the list’s posting address.

>>> msg['List-Post'] = 'not-this-list@example.com'
>>> rule.check(mlist, msg, {})
False

If the header is present and does match the posting address, the rule
matches.

>>> del msg['list-post']
>>> msg['List-Post'] = mlist.posting_address
>>> rule.check(mlist, msg, {})
True

Even if there are multiple List-Post: headers, as long as one with the
posting address exists, the rule matches.

>>> msg = message_from_string("""\
... From: aperson@example.com
... List-Post: not-this-list@example.com
... List-Post: _xtest@example.com
... List-Post: foo@example.com
...
... An important message.
... """)
>>> rule.check(mlist, msg, {})
True

Message size

The message-size rule matches when the posted message is bigger than a
specified maximum. Generally this is used to prevent huge attachments from
getting posted to the list. This value is calculated in terms of KB (1024
bytes).

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['max-size']
>>> print(rule.name)
max-size

For example, setting the maximum message size to 1 means that any message
bigger than that will match the rule.

>>> mlist.max_message_size = 1 # 1024 bytes
>>> one_line = 'x' * 79
>>> big_body = '\n'.join([one_line] * 15)
>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com
...
... """ + big_body)
>>> rule.check(mlist, msg, {})
True

Setting the maximum message size to zero means no size check is performed.

>>> mlist.max_message_size = 0
>>> rule.check(mlist, msg, {})
False

Of course, if the maximum size is larger than the message’s size, then it’s
still okay.

>>> mlist.max_message_size = msg.original_size/1024.0 + 1
>>> rule.check(mlist, msg, {})
False

Moderation

All members and nonmembers have a moderation action. When the action is not
defer, the moderation rule flags the message as needing moderation. This
might be to automatically accept, discard, reject, or hold the message.

Two separate rules check for member and nonmember moderation. Member
moderation happens early in the built-in chain, while nonmember moderation
happens later in the chain, after normal moderation checks.

>>> mlist = create_list('test@example.com')

Member moderation

>>> member_rule = config.rules['member-moderation']
>>> print(member_rule.name)
member-moderation

Anne, a mailing list member, sends a message to the mailing list. Her
postings are not moderated.

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist, 'Anne')
<Member: Anne Person <aperson@example.com> on test@example.com
 as MemberRole.member>

>>> member = mlist.members.get_member('aperson@example.com')
>>> print(member.moderation_action)
Action.defer

Because Anne is not moderated, the member moderation rule does not match.

>>> member_msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A posted message
...
... """)
>>> member_rule.check(mlist, member_msg, {})
False

Once the member’s moderation action is set to something other than defer,
the rule matches. Also, the message metadata has a few extra pieces of
information for the eventual moderation chain.

>>> from mailman.interfaces.action import Action
>>> member.moderation_action = Action.hold
>>> msgdata = {}
>>> member_rule.check(mlist, member_msg, msgdata)
True
>>> dump_msgdata(msgdata)
moderation_action: hold
moderation_sender: aperson@example.com

Nonmembers

Nonmembers are handled in a similar way, although by default, nonmember
postings are held for moderator approval.

>>> nonmember_rule = config.rules['nonmember-moderation']
>>> print(nonmember_rule.name)
nonmember-moderation

Bart, who is not a member of the mailing list, sends a message to the list.

>>> from mailman.interfaces.member import MemberRole
>>> subscribe(mlist, 'Bart', MemberRole.nonmember)
<Member: Bart Person <bperson@example.com> on test@example.com
 as MemberRole.nonmember>

>>> nonmember = mlist.nonmembers.get_member('bperson@example.com')
>>> print(nonmember.moderation_action)
Action.hold

When Bart is registered as a nonmember of the list, his moderation action is
set to hold by default. Thus the rule matches and the message metadata again
carries some useful information.

>>> nonmember_msg = message_from_string("""\
... From: bperson@example.com
... To: test@example.com
... Subject: A posted message
...
... """)
>>> msgdata = {}
>>> nonmember_rule.check(mlist, nonmember_msg, msgdata)
True
>>> dump_msgdata(msgdata)
moderation_action: hold
moderation_sender: bperson@example.com

Of course, the nonmember action can be set to defer the decision, in which
case the rule does not match.

>>> nonmember.moderation_action = Action.defer
>>> nonmember_rule.check(mlist, nonmember_msg, {})
False

Unregistered nonmembers

The incoming runner ensures that all sender addresses are registered in the
system, but it is the moderation rule that subscribes nonmember addresses to
the mailing list if they are not already subscribed.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> address = getUtility(IUserManager).create_address(
... 'cperson@example.com')
>>> address
<Address: cperson@example.com [not verified] at ...>

>>> msg = message_from_string("""\
... From: cperson@example.com
... To: test@example.com
... Subject: A posted message
...
... """)

cperson is neither a member, nor a nonmember of the mailing list.

>>> def memberkey(member):
... return member.mailing_list, member.address.email, member.role.value

>>> dump_list(mlist.members.members, key=memberkey)
<Member: Anne Person <aperson@example.com>
 on test@example.com as MemberRole.member>
>>> dump_list(mlist.nonmembers.members, key=memberkey)
<Member: Bart Person <bperson@example.com>
 on test@example.com as MemberRole.nonmember>

However, when the nonmember moderation rule runs, it adds the cperson as a
nonmember of the list. The rule also matches.

>>> msgdata = {}
>>> nonmember_rule.check(mlist, msg, msgdata)
True
>>> dump_msgdata(msgdata)
moderation_action: hold
moderation_sender: cperson@example.com

>>> dump_list(mlist.members.members, key=memberkey)
<Member: Anne Person <aperson@example.com>
 on test@example.com as MemberRole.member>
>>> dump_list(mlist.nonmembers.members, key=memberkey)
<Member: Bart Person <bperson@example.com>
 on test@example.com as MemberRole.nonmember>
<Member: cperson@example.com
 on test@example.com as MemberRole.nonmember>

Cross-membership checks

Of course, the member moderation rule does not match for nonmembers…

>>> member_rule.check(mlist, nonmember_msg, {})
False
>>> nonmember_rule.check(mlist, member_msg, {})
False

Newsgroup moderation

The news-moderation rule matches all messages posted to mailing lists that
gateway to a moderated newsgroup. The reason for this is that such messages
must get forwarded on to the newsgroup moderator. From there it will get
posted to the newsgroup, and from there, gated to the mailing list. It’s a
circuitous route, but it works nonetheless by holding all messages posted
directly to the mailing list.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['news-moderation']
>>> print(rule.name)
news-moderation

Set the list configuration variable to enable newsgroup moderation.

>>> from mailman.interfaces.nntp import NewsgroupModeration
>>> mlist.newsgroup_moderation = NewsgroupModeration.moderated

And now all messages will match the rule.

>>> msg = message_from_string("""\
... From: aperson@example.org
... Subject: An announcement
...
... Great things are happening.
... """)
>>> rule.check(mlist, msg, {})
True

When moderation is turned off, the rule does not match.

>>> mlist.newsgroup_moderation = NewsgroupModeration.none
>>> rule.check(mlist, msg, {})
False

No Subject header

This rule matches if the message has no Subject: header, or if the header
is the empty string when stripped.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['no-subject']
>>> print(rule.name)
no-subject

A message with a non-empty subject does not match the rule.

>>> msg = message_from_string("""\
... From: aperson@example.org
... To: _xtest@example.com
... Subject: A posted message
...
... """)
>>> rule.check(mlist, msg, {})
False

Delete the Subject: header and the rule matches.

>>> del msg['subject']
>>> rule.check(mlist, msg, {})
True

Even a Subject: header with only whitespace still matches the rule.

>>> msg['Subject'] = ' '
>>> rule.check(mlist, msg, {})
True

Maximum number of recipients

This rule matches when there are more than the maximum allowed number of
explicit recipients addressed by the message.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['max-recipients']
>>> print(rule.name)
max-recipients

In this case, we’ll create a message with five recipients. These include all
addresses in the To: and CC: headers.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com, bperson@example.com
... Cc: cperson@example.com
... Cc: dperson@example.com (Dan Person)
... To: Elly Q. Person <eperson@example.com>
...
... Hey folks!
... """)

For backward compatibility, the message must have fewer than the maximum
number of explicit recipients.

>>> mlist.max_num_recipients = 5
>>> rule.check(mlist, msg, {})
True

>>> mlist.max_num_recipients = 6
>>> rule.check(mlist, msg, {})
False

Zero means any number of recipients are allowed.

>>> mlist.max_num_recipients = 0
>>> rule.check(mlist, msg, {})
False

Rules

Rules are applied to each message as part of a rule chain. Individual rules
simply return a boolean specifying whether the rule matches or not. Chain
links determine what happens when a rule matches.

All rules

Rules are maintained in the configuration object as a dictionary mapping rule
names to rule objects.

>>> from zope.interface.verify import verifyObject
>>> from mailman.interfaces.rules import IRule
>>> for rule_name in sorted(config.rules):
... rule = config.rules[rule_name]
... print(rule_name, verifyObject(IRule, rule))
administrivia True
any True
approved True
emergency True
implicit-dest True
loop True
max-recipients True
max-size True
member-moderation True
news-moderation True
no-subject True
nonmember-moderation True
suspicious-header True
truth True

You can get a rule by name.

>>> rule = config.rules['emergency']
>>> verifyObject(IRule, rule)
True

Rule checks

Individual rules can be checked to see if they match, by running the rule’s
check() method. This returns a boolean indicating whether the rule was
matched or not.

>>> mlist = create_list('_xtest@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... An important message.
... """)

For example, the emergency rule just checks to see if the emergency flag
is set on the mailing list, and the message has not been pre-approved by the
list administrator.

>>> print(rule.name)
emergency
>>> mlist.emergency = False
>>> rule.check(mlist, msg, {})
False
>>> mlist.emergency = True
>>> rule.check(mlist, msg, {})
True
>>> rule.check(mlist, msg, dict(moderator_approved=True))
False

Suspicious headers

Suspicious headers are a way for Mailman to hold messages that match a
particular regular expression. This mostly historical feature is fairly
confusing to users, and the list attribute that controls this is misnamed.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['suspicious-header']
>>> print(rule.name)
suspicious-header

Set the so-called suspicious header configuration variable.

>>> mlist.bounce_matching_headers = 'From: .*person@(blah.)?example.com'
>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com
... Subject: An implicit message
...
... """)
>>> rule.check(mlist, msg, {})
True

But if the header doesn’t match the regular expression, the rule won’t match.
This one comes from a .org address.

>>> msg = message_from_string("""\
... From: aperson@example.org
... To: _xtest@example.com
... Subject: An implicit message
...
... """)
>>> rule.check(mlist, msg, {})
False

Truth

This rule always matches. This makes it useful as a terminus rule for
unconditionally jumping to another chain.

>>> rule = config.rules['truth']
>>> rule.check(False, False, False)
True

Acknowledgment headers

Messages that flow through the global pipeline get their headers cooked,
which basically means that their headers go through several mostly unrelated
transformations. Some headers get added, others get changed. Some of these
changes depend on mailing list settings and others depend on how the message
is getting sent through the system. We’ll take things one-by-one.

>>> mlist = create_list('_xtest@example.com')
>>> mlist.subject_prefix = ''

When the message’s metadata has a noack key set, an X-Ack: no header is
added.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)

>>> from mailman.handlers.cook_headers import process
>>> process(mlist, msg, dict(noack=True))
>>> print(msg.as_string())
From: aperson@example.com
X-Ack: no
...

Any existing X-Ack header in the original message is removed.

>>> msg = message_from_string("""\
... X-Ack: yes
... From: aperson@example.com
...
... A message of great import.
... """)
>>> process(mlist, msg, dict(noack=True))
>>> print(msg.as_string())
From: aperson@example.com
X-Ack: no
...

Message acknowledgment

When a user posts a message to a mailing list, and that user has chosen to
receive acknowledgments of their postings, Mailman will sent them such an
acknowledgment.

>>> mlist = create_list('test@example.com')
>>> mlist.display_name = 'Test'
>>> mlist.preferred_language = 'en'
>>> mlist.send_welcome_message = False
>>> # XXX This will almost certainly change once we've worked out the web
>>> # space layout for mailing lists now.

>>> # Ensure that the virgin queue is empty, since we'll be checking this
>>> # for new auto-response messages.
>>> from mailman.testing.helpers import get_queue_messages
>>> get_queue_messages('virgin')
[]

Subscribe a user to the mailing list.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> from mailman.interfaces.member import MemberRole
>>> user_1 = user_manager.create_user('aperson@example.com')
>>> address_1 = list(user_1.addresses)[0]
>>> mlist.subscribe(address_1, MemberRole.member)
<Member: aperson@example.com on test@example.com as MemberRole.member>

Non-member posts

Non-members can’t get acknowledgments of their posts to the mailing list.

>>> msg = message_from_string("""\
... From: bperson@example.com
...
... """)

>>> handler = config.handlers['acknowledge']
>>> handler.process(mlist, msg, {})
>>> get_queue_messages('virgin')
[]

We can also specify the original sender in the message’s metadata. If that
person is also not a member, no acknowledgment will be sent either.

>>> msg = message_from_string("""\
... From: bperson@example.com
...
... """)
>>> handler.process(mlist, msg,
... dict(original_sender='cperson@example.com'))
>>> get_queue_messages('virgin')
[]

No acknowledgment requested

Unless the user has requested acknowledgments, they will not get one.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> handler.process(mlist, msg, {})
>>> get_queue_messages('virgin')
[]

Similarly if the original sender is specified in the message metadata, and
that sender is a member but not one who has requested acknowledgments, none
will be sent.

>>> user_2 = user_manager.create_user('dperson@example.com')
>>> address_2 = list(user_2.addresses)[0]
>>> mlist.subscribe(address_2, MemberRole.member)
<Member: dperson@example.com on test@example.com as MemberRole.member>

>>> handler.process(mlist, msg,
... dict(original_sender='dperson@example.com'))
>>> get_queue_messages('virgin')
[]

Requested acknowledgments

If the member requests acknowledgments, Mailman will send them one when they
post to the mailing list.

>>> user_1.preferences.acknowledge_posts = True

The receipt will include the original message’s subject in the response body,

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: Something witty and insightful
...
... """)
>>> handler.process(mlist, msg, {})
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : test.example.com
nodecorate : True
recipients : {'aperson@example.com'}
reduced_list_headers: True
...
>>> print(messages[0].msg.as_string())
...
MIME-Version: 1.0
...
Subject: Test post acknowledgment
From: test-bounces@example.com
To: aperson@example.com
...
Precedence: bulk
<BLANKLINE>
Your message entitled
<BLANKLINE>
 Something witty and insightful
<BLANKLINE>
was successfully received by the Test mailing list.
<BLANKLINE>
List info page: http://lists.example.com/listinfo/test@example.com
Your preferences: http://example.com/aperson@example.com
<BLANKLINE>

If there is no subject, then the receipt will use a generic message.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> handler.process(mlist, msg, {})
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : test.example.com
nodecorate : True
recipients : {'aperson@example.com'}
reduced_list_headers: True
...
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Test post acknowledgment
From: test-bounces@example.com
To: aperson@example.com
...
Precedence: bulk
<BLANKLINE>
Your message entitled
<BLANKLINE>
 (no subject)
<BLANKLINE>
was successfully received by the Test mailing list.
<BLANKLINE>
List info page: http://lists.example.com/listinfo/test@example.com
Your preferences: http://example.com/aperson@example.com
<BLANKLINE>

After delivery

After a message is delivered, or more correctly, after it has been processed
by the rest of the handlers in the incoming queue pipeline, a couple of
bookkeeping pieces of information are updated.

>>> from datetime import timedelta
>>> from mailman.utilities.datetime import now
>>> mlist = create_list('_xtest@example.com')
>>> post_time = now() - timedelta(minutes=10)
>>> mlist.last_post_time = post_time
>>> mlist.post_id = 10

Processing a message with this handler updates the last_post_time and post_id
attributes.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... Something interesting.
... """)

>>> handler = config.handlers['after-delivery']
>>> handler.process(mlist, msg, {})
>>> mlist.last_post_time > post_time
True
>>> mlist.post_id
11

Archives

Updating the archives with posted messages is handled by a separate queue,
which allows for better memory management and prevents blocking the main
delivery processes while messages are archived. This also allows external
archivers to work in a separate process from the main Mailman delivery
processes.

>>> handler = config.handlers['to-archive']
>>> mlist = create_list('_xtest@example.com')
>>> switchboard = config.switchboards['archive']

A helper function.

>>> def clear():
... for filebase in switchboard.files:
... msg, msgdata = switchboard.dequeue(filebase)
... switchboard.finish(filebase)

The purpose of this handler is to make a simple decision as to whether the
message should get archived and if so, to drop the message in the archiving
queue. Really the most important things are to determine when a message
should not get archived.

For example, no digests should ever get archived.

>>> from mailman.interfaces.archiver import ArchivePolicy
>>> mlist.archive_policy = ArchivePolicy.public
>>> msg = message_from_string("""\
... Subject: A sample message
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, dict(isdigest=True))
>>> switchboard.files
[]

If the mailing list is not configured to archive, then even regular deliveries
won’t be archived.

>>> mlist.archive_policy = ArchivePolicy.never
>>> handler.process(mlist, msg, {})
>>> switchboard.files
[]

There are two de-facto standards for a message to indicate that it does not
want to be archived. We’ve seen both in the wild so both are supported. The
X-No-Archive: header can be used to indicate that the message should not
be archived. Confusingly, this header’s value is actually ignored.

>>> mlist.archive_policy = ArchivePolicy.public
>>> msg = message_from_string("""\
... Subject: A sample message
... X-No-Archive: YES
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, dict(isdigest=True))
>>> switchboard.files
[]

Even a no value will stop the archiving of the message.

>>> msg = message_from_string("""\
... Subject: A sample message
... X-No-Archive: No
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, dict(isdigest=True))
>>> switchboard.files
[]

Another header that’s been observed is the X-Archive: header. Here, the
header’s case folded value must be no in order to prevent archiving.

>>> msg = message_from_string("""\
... Subject: A sample message
... X-Archive: No
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, dict(isdigest=True))
>>> switchboard.files
[]

But if the value is yes, then the message will be archived.

>>> msg = message_from_string("""\
... Subject: A sample message
... X-Archive: Yes
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, {})
>>> len(switchboard.files)
1
>>> filebase = switchboard.files[0]
>>> qmsg, qdata = switchboard.dequeue(filebase)
>>> switchboard.finish(filebase)
>>> print(qmsg.as_string())
Subject: A sample message
X-Archive: Yes
<BLANKLINE>
A message of great import.
<BLANKLINE>
>>> dump_msgdata(qdata)
_parsemsg: False
version : 3

Without either archiving header, and all other things being the same, the
message will get archived.

>>> msg = message_from_string("""\
... Subject: A sample message
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, {})
>>> len(switchboard.files)
1
>>> filebase = switchboard.files[0]
>>> qmsg, qdata = switchboard.dequeue(filebase)
>>> switchboard.finish(filebase)
>>> print(qmsg.as_string())
Subject: A sample message
<BLANKLINE>
A message of great import.
<BLANKLINE>
>>> dump_msgdata(qdata)
_parsemsg: False
version : 3

Avoid duplicates

This handler implements several strategies to reduce the reception of
duplicate messages. It does this by removing certain recipients from the list
of recipients calculated earlier.

>>> mlist = create_list('_xtest@example.com')

Create some members we’re going to use.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> address_a = user_manager.create_address('aperson@example.com')
>>> address_b = user_manager.create_address('bperson@example.com')

>>> from mailman.interfaces.member import MemberRole
>>> member_a = mlist.subscribe(address_a, MemberRole.member)
>>> member_b = mlist.subscribe(address_b, MemberRole.member)
>>> # This is the message metadata dictionary as it would be produced by
>>> # the CalcRecips handler.
>>> recips = dict(
... recipients=['aperson@example.com', 'bperson@example.com'])

Short circuiting

The module short-circuits if there are no recipients.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: A message of great import
...
... Something
... """)
>>> msgdata = {}

>>> handler = config.handlers['avoid-duplicates']
>>> handler.process(mlist, msg, msgdata)
>>> msgdata
{}
>>> print(msg.as_string())
From: aperson@example.com
Subject: A message of great import

Something

Suppressing the list copy

Members can elect not to receive a list copy of any message on which they are
explicitly named as a recipient. This is done by setting their
receive_list_copy preference to False. However, if they aren’t
mentioned in one of the recipient headers (i.e. To, CC, Resent-To,
or Resent-CC), then they will get a list copy.

>>> member_a.preferences.receive_list_copy = False
>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['aperson@example.com', 'bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
<BLANKLINE>
Something of great import.
<BLANKLINE>

If they’re mentioned on the CC line, they won’t get a list copy.

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... CC: aperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
CC: aperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

But if they’re mentioned on the CC line and have receive_list_copy set
to True (the default), then they still get a list copy.

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... CC: bperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['aperson@example.com', 'bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
CC: bperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

Other headers checked for recipients include the To…

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... To: aperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
To: aperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

… Resent-To …

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... Resent-To: aperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
Resent-To: aperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

…and Resent-CC headers.

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... Resent-Cc: aperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
Resent-Cc: aperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

Cleansing headers

All messages posted to a list get their headers cleansed. Some headers are
related to additional permissions that can be granted to the message and other
headers can be used to fish for membership.

>>> mlist = create_list('_xtest@example.com')

Headers such as Approved, Approve, (as well as their X- variants)
and Urgent are used to grant special permissions to individual messages.
All may contain a password; the first two headers are used by list
administrators to pre-approve a message normal held for approval. The latter
header is used to send a regular message to all members, regardless of whether
they get digests or not. Because all three headers contain passwords, they
must be removed from any posted message.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Approved: foobar
... Approve: barfoo
... X-Approved: bazbar
... X-Approve: barbaz
... Urgent: notreally
... Subject: A message of great import
...
... Blah blah blah
... """)

>>> handler = config.handlers['cleanse']
>>> handler.process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
Subject: A message of great import

Blah blah blah

Other headers can be used by list members to fish the list for membership, so
we don’t let them go through. These are a mix of standard headers and custom
headers supported by some mail readers. For example, X-PMRC is supported
by Pegasus mail. I don’t remember what program uses X-Confirm-Reading-To
though (Some Microsoft product perhaps?).

>>> msg = message_from_string("""\
... From: bperson@example.com
... Reply-To: bperson@example.org
... Sender: asystem@example.net
... Return-Receipt-To: another@example.com
... Disposition-Notification-To: athird@example.com
... X-Confirm-Reading-To: afourth@example.com
... X-PMRQC: afifth@example.com
... Subject: a message to you
...
... How are you doing?
... """)
>>> handler.process(mlist, msg, {})
>>> print(msg.as_string())
From: bperson@example.com
Reply-To: bperson@example.org
Sender: asystem@example.net
Subject: a message to you
<BLANKLINE>
How are you doing?
<BLANKLINE>

Anonymous lists

Anonymous mailing lists also try to cleanse certain identifying headers from
the original posting, so that it is at least a bit more difficult to determine
who sent the message. This isn’t perfect though, for example, the body of the
messages are never scrubbed (though that might not be a bad idea). The
From and Reply-To headers in the posted message are taken from list
attributes.

Hotmail apparently sets X-Originating-Email.

>>> mlist.anonymous_list = True
>>> mlist.description = 'A Test Mailing List'
>>> mlist.preferred_language = 'en'
>>> msg = message_from_string("""\
... From: bperson@example.com
... Reply-To: bperson@example.org
... Sender: asystem@example.net
... X-Originating-Email: cperson@example.com
... Subject: a message to you
...
... How are you doing?
... """)
>>> handler.process(mlist, msg, {})
>>> print(msg.as_string())
Subject: a message to you
From: A Test Mailing List <_xtest@example.com>
Reply-To: _xtest@example.com
<BLANKLINE>
How are you doing?
<BLANKLINE>

Cooking headers

Messages that flow through the global pipeline get their headers ‘cooked’,
which basically means that their headers go through several mostly unrelated
transformations. Some headers get added, others get changed. Some of these
changes depend on mailing list settings and others depend on how the message
is getting sent through the system. We’ll take things one-by-one.

>>> mlist = create_list('test@example.com')
>>> mlist.subject_prefix = ''

Saving the original sender

Because the original sender headers may get deleted or changed, this handler
will place the sender in the message metadata for safe keeping.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)
>>> msgdata = {}

>>> from mailman.handlers.cook_headers import process
>>> process(mlist, msg, msgdata)
>>> print(msgdata['original_sender'])
aperson@example.com

But if there was no original sender, then the empty string will be saved.

>>> msg = message_from_string("""\
... Subject: No original sender
...
... A message of great import.
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msgdata['original_sender'])
<BLANKLINE>

Mailman version header

Mailman will also insert an X-Mailman-Version header…

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> from mailman.version import VERSION
>>> msg['x-mailman-version'] == VERSION
True

…but only if one doesn’t already exist.

>>> msg = message_from_string("""\
... From: aperson@example.com
... X-Mailman-Version: 3000
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['x-mailman-version'])
3000

Precedence header

Mailman will insert a Precedence header, which is a de-facto standard for
telling automatic reply software (e.g. vacation(1)) not to respond to this
message.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['precedence'])
list

But Mailman will only add that header if the original message doesn’t already
have one of them.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Precedence: junk
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['precedence'])
junk

Personalization

The To field normally contains the list posting address. However when
messages are fully personalized, that header will get overwritten with the
address of the recipient. The list’s posting address will be added to one of
the recipient headers so that users will be able to reply back to the list.

>>> from mailman.interfaces.mailinglist import (
... Personalization, ReplyToMunging)
>>> mlist.personalize = Personalization.full
>>> mlist.reply_goes_to_list = ReplyToMunging.no_munging
>>> mlist.description = 'My test mailing list'
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
X-Mailman-Version: ...
Precedence: list
Cc: My test mailing list <test@example.com>
<BLANKLINE>
<BLANKLINE>

Message decoration

Message decoration is the process of adding headers and footers to the
original message. A handler module takes care of this based on the settings
of the mailing list and the type of message being processed.

>>> mlist = create_list('_xtest@example.com')
>>> msg_text = """\
... From: aperson@example.org
...
... Here is a message.
... """
>>> msg = message_from_string(msg_text)

Short circuiting

Digest messages get decorated during the digest creation phase so no extra
decorations are added for digest messages.

>>> from mailman.handlers.decorate import process
>>> process(mlist, msg, dict(isdigest=True))
>>> print(msg.as_string())
From: aperson@example.org

Here is a message.

>>> process(mlist, msg, dict(nodecorate=True))
>>> print(msg.as_string())
From: aperson@example.org

Here is a message.

Simple decorations

Message decorations are specified by URI and can be specialized by the mailing
list and language. Internal Mailman decorations can be referenced by using
the mailman:// URL scheme. Here we create a simple English header and
footer for all mailing lists in our site.

>>> import os, tempfile
>>> template_dir = tempfile.mkdtemp()
>>> site_dir = os.path.join(template_dir, 'site', 'en')
>>> os.makedirs(site_dir)
>>> config.push('templates', """
... [paths.testing]
... template_dir: {0}
... """.format(template_dir))

>>> myheader_path = os.path.join(site_dir, 'myheader.txt')
>>> with open(myheader_path, 'w') as fp:
... print('header', file=fp)
>>> myfooter_path = os.path.join(site_dir, 'myfooter.txt')
>>> with open(myfooter_path, 'w') as fp:
... print('footer', file=fp)

Setting these attributes on the mailing list causes it to use these
templates. Since these are site-global templates, we can use a shorter path.

>>> mlist.header_uri = 'mailman:///myheader.txt'
>>> mlist.footer_uri = 'mailman:///myfooter.txt'

Text messages that have no declared content type are, by default encoded in
ASCII. When the mailing list’s preferred language is en (i.e. English),
the character set of the mailing list and of the message will match, allowing
Mailman to simply prepend the header and append the footer verbatim.

>>> mlist.preferred_language = 'en'
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.org
...
<BLANKLINE>
header
Here is a message.
footer

Mailman supports a number of interpolation variables, placeholders in the
header and footer for information to be filled in with mailing list specific
data. An example of such information is the mailing list’s real name (a
short descriptive name for the mailing list).

>>> with open(myheader_path, 'w') as fp:
... print('$display_name header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('$display_name footer', file=fp)

>>> msg = message_from_string(msg_text)
>>> mlist.display_name = 'XTest'
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.org
...
XTest header
Here is a message.
XTest footer

You can’t just pick any interpolation variable though; if you do, the variable
will remain in the header or footer unchanged.

>>> with open(myheader_path, 'w') as fp:
... print('$dummy header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('$dummy footer', file=fp)

>>> msg = message_from_string(msg_text)
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.org
...
$dummy header
Here is a message.
$dummy footer

Handling RFC 3676 ‘format=flowed’ parameters

RFC 3676 describes a standard by which text/plain messages can marked by
generating MUAs for better readability in compatible receiving MUAs. The
format parameter on the text/plain Content-Type header gives hints as
to how the receiving MUA may flow and delete trailing whitespace for better
display in a proportional font.

When Mailman sees text/plain messages with such RFC 3676 parameters, it
preserves these parameters when it concatenates headers and footers to the
message payload.

>>> with open(myheader_path, 'w') as fp:
... print('header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('footer', file=fp)

>>> mlist.preferred_language = 'en'
>>> msg = message_from_string("""\
... From: aperson@example.org
... Content-Type: text/plain; format=flowed; delsp=no
...
... Here is a message\x20
... with soft line breaks.
... """)
>>> process(mlist, msg, {})
>>> # Don't use 'print' here as above because it won't be obvious from the
>>> # output that the soft-line break space at the end of the 'Here is a
>>> # message' line will be retained in the output.
>>> print(msg['content-type'])
text/plain; format="flowed"; delsp="no"; charset="us-ascii"
>>> for line in msg.get_payload().splitlines():
... print('>{0}<'.format(line))
>header<
>Here is a message <
>with soft line breaks.<
>footer<

Decorating mixed-charset messages

When a message has no explicit character set, it is assumed to be ASCII.
However, if the mailing list’s preferred language has a different character
set, Mailman will still try to concatenate the header and footer, but it will
convert the text to utf-8 and base-64 encode the message payload.

'ja' = Japanese; charset = 'euc-jp'
>>> mlist.preferred_language = 'ja'

>>> with open(myheader_path, 'w') as fp:
... print('$description header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('$description footer', file=fp)
>>> mlist.description = '\u65e5\u672c\u8a9e'

>>> from email.message import Message
>>> msg = Message()
>>> msg.set_payload('Fran\xe7aise', 'iso-8859-1')
>>> print(msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
<BLANKLINE>
Fran=E7aise
>>> process(mlist, msg, {})
>>> print(msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: base64
<BLANKLINE>
5pel5pys6KqeIGhlYWRlcgpGcmFuw6dhaXNlCuaXpeacrOiqniBmb290ZXIK

Sometimes the message even has an unknown character set. In this case,
Mailman has no choice but to decorate the original message with MIME
attachments.

>>> mlist.preferred_language = 'en'
>>> with open(myheader_path, 'w') as fp:
... print('header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('footer', file=fp)

>>> msg = message_from_string("""\
... From: aperson@example.org
... Content-Type: text/plain; charset=unknown
... Content-Transfer-Encoding: 7bit
...
... Here is a message.
... """)

>>> process(mlist, msg, {})
>>> msg.set_boundary('BOUNDARY')
>>> print(msg.as_string())
From: aperson@example.org
Content-Type: multipart/mixed; boundary="BOUNDARY"

--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline

header
--BOUNDARY
Content-Type: text/plain; charset=unknown
Content-Transfer-Encoding: 7bit

Here is a message.

--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline

footer
--BOUNDARY--

Decorating multipart messages

Multipart messages have to be decorated differently. The header and footer
cannot be simply concatenated into the payload because that will break the
MIME structure of the message. Instead, the header and footer are attached as
separate MIME subparts.

When the outer part is multipart/mixed, the header and footer can have a
Content-Disposition of inline so that MUAs can display these headers
as if they were simply concatenated.

>>> part_1 = message_from_string("""\
... From: aperson@example.org
...
... Here is the first message.
... """)
>>> part_2 = message_from_string("""\
... From: bperson@example.com
...
... Here is the second message.
... """)
>>> from email.mime.multipart import MIMEMultipart
>>> msg = MIMEMultipart('mixed', boundary='BOUNDARY',
... _subparts=(part_1, part_2))
>>> process(mlist, msg, {})
>>> print(msg.as_string())
Content-Type: multipart/mixed; boundary="BOUNDARY"
MIME-Version: 1.0
<BLANKLINE>
--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
<BLANKLINE>
header
--BOUNDARY
From: aperson@example.org
<BLANKLINE>
Here is the first message.
<BLANKLINE>
--BOUNDARY
From: bperson@example.com
<BLANKLINE>
Here is the second message.
<BLANKLINE>
--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
<BLANKLINE>
footer
--BOUNDARY--

Decorating other content types

Non-multipart non-text content types will get wrapped in a multipart/mixed
so that the header and footer can be added as attachments.

>>> msg = message_from_string("""\
... From: aperson@example.org
... Content-Type: image/x-beautiful
...
... IMAGEDATAIMAGEDATAIMAGEDATA
... """)
>>> process(mlist, msg, {})
>>> msg.set_boundary('BOUNDARY')
>>> print(msg.as_string())
From: aperson@example.org
...
--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
<BLANKLINE>
header
--BOUNDARY
Content-Type: image/x-beautiful
<BLANKLINE>
IMAGEDATAIMAGEDATAIMAGEDATA
<BLANKLINE>
--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
<BLANKLINE>
footer
--BOUNDARY--

Digests

Digests are a way for a user to receive list traffic in collections instead of
as individual messages when immediately posted. There are several forms of
digests, although only two are currently supported: MIME digests and RFC 1153
(a.k.a. plain text) digests.

>>> mlist = create_list('xtest@example.com')

This is a helper function used to iterate through all the accumulated digest
messages, in the order in which they were posted. This makes it easier to
update the tests when we switch to a different mailbox format.

>>> from mailman.testing.helpers import digest_mbox
>>> from itertools import count
>>> from string import Template

>>> def message_factory():
... for i in count(1):
... text = Template("""\
... From: aperson@example.com
... To: xtest@example.com
... Subject: Test message $i
...
... Here is message $i
... """).substitute(i=i)
... yield message_from_string(text)
>>> message_factory = message_factory()

Short circuiting

When a message is posted to the mailing list, it is generally added to a
mailbox, unless the mailing list does not allow digests.

>>> mlist.digestable = False
>>> msg = next(message_factory)
>>> process = config.handlers['to-digest'].process
>>> process(mlist, msg, {})
>>> sum(1 for msg in digest_mbox(mlist))
0
>>> digest_queue = config.switchboards['digest']
>>> digest_queue.files
[]

…or they may allow digests but the message is already a digest.

>>> mlist.digestable = True
>>> process(mlist, msg, dict(isdigest=True))
>>> sum(1 for msg in digest_mbox(mlist))
0
>>> digest_queue.files
[]

Sending a digest

For messages which are not digests, but which are posted to a digesting
mailing list, the messages will be stored until they reach a criteria
triggering the sending of the digest. If none of those criteria are met, then
the message will just sit in the mailbox for a while.

>>> mlist.digest_size_threshold = 10000
>>> process(mlist, msg, {})
>>> digest_queue.files
[]
>>> digest = digest_mbox(mlist)
>>> sum(1 for msg in digest)
1
>>> import os
>>> os.remove(digest._path)

When the size of the digest mailbox reaches the maximum size threshold, a
marker message is placed into the digest runner’s queue. The digest is not
actually crafted by the handler.

>>> mlist.digest_size_threshold = 1
>>> mlist.volume = 2
>>> mlist.next_digest_number = 10
>>> digest_path = os.path.join(mlist.data_path, 'digest.mmdf')
>>> size = 0
>>> for msg in message_factory:
... process(mlist, msg, {})
... # When the digest reaches the proper size, it is renamed. So we
... # can break out of this list when the file disappears.
... if not os.path.exists(digest_path):
... break

>>> sum(1 for msg in digest_mbox(mlist))
0
>>> len(digest_queue.files)
1

The digest has been moved to a unique file.

>>> from mailman.utilities.mailbox import Mailbox
>>> from mailman.testing.helpers import get_queue_messages
>>> item = get_queue_messages('digest')[0]
>>> for msg in Mailbox(item.msgdata['digest_path']):
... print(msg['subject'])
Test message 2
Test message 3
Test message 4
Test message 5
Test message 6
Test message 7
Test message 8
Test message 9

Digests are actually crafted and sent by a separate digest runner.

File recipients

Mailman can calculate the recipients for a message from a Sendmail-style
include file. This file must be called members.txt and it must live in
the list’s data directory.

>>> mlist = create_list('_xtest@example.com')

Short circuiting

If the message’s metadata already has recipients, this handler immediately
returns.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message.
... """)
>>> msgdata = {'recipients': 7}

>>> handler = config.handlers['file-recipients']
>>> handler.process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com

A message.

>>> dump_msgdata(msgdata)
recipients: 7

Existing file

If the file exists, it contains a list of addresses, one per line. These
addresses are returned as the set of recipients.

>>> import os
>>> file_path = os.path.join(mlist.data_path, 'members.txt')
>>> with open(file_path, 'w', encoding='utf-8') as fp:
... print('bperson@example.com', file=fp)
... print('cperson@example.com', file=fp)
... print('dperson@example.com', file=fp)
... print('eperson@example.com', file=fp)
... print('fperson@example.com', file=fp)
... print('gperson@example.com', file=fp)

>>> msgdata = {}
>>> handler.process(mlist, msg, msgdata)
>>> dump_list(msgdata['recipients'])
bperson@example.com
cperson@example.com
dperson@example.com
eperson@example.com
fperson@example.com
gperson@example.com

However, if the sender of the original message is a member of the list and
their address is in the include file, the sender’s address is not included
in the recipients list.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> address_1 = getUtility(IUserManager).create_address(
... 'cperson@example.com')

>>> from mailman.interfaces.member import MemberRole
>>> mlist.subscribe(address_1, MemberRole.member)
<Member: cperson@example.com on _xtest@example.com as MemberRole.member>

>>> msg = message_from_string("""\
... From: cperson@example.com
...
... A message.
... """)
>>> msgdata = {}
>>> handler.process(mlist, msg, msgdata)
>>> dump_list(msgdata['recipients'])
bperson@example.com
dperson@example.com
eperson@example.com
fperson@example.com
gperson@example.com

Content filtering

Mailman can filter the content of messages posted to a mailing list by
stripping MIME subparts, and possibly reorganizing the MIME structure of a
message.

>>> mlist = create_list('test@example.com')

Several mailing list options control content filtering. First, the feature
must be enabled, then there are two options that control which MIME types get
filtered and which get passed. Finally, there is an option to control whether
text/html parts will get converted to plain text. Let’s set up some
defaults for these variables, then we’ll explain them in more detail below.

>>> mlist.filter_content = True
>>> mlist.filter_types = []
>>> mlist.pass_types = []
>>> mlist.convert_html_to_plaintext = False

Filtering the outer content type

A simple filtering setting will just search the content types of the messages
parts, discarding all parts with a matching MIME type. If the message’s outer
content type matches the filter, the entire message will be discarded.
However, if we turn off content filtering altogether, then the handler
short-circuits.

>>> from mailman.interfaces.mime import FilterAction

>>> mlist.filter_types = ['image/jpeg']
>>> mlist.filter_action = FilterAction.discard

>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: image/jpeg
... MIME-Version: 1.0
...
... xxxxx
... """)

>>> process = config.handlers['mime-delete'].process
>>> mlist.filter_content = False
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: image/jpeg
MIME-Version: 1.0

xxxxx
>>> msgdata
{}

Similarly, no content filtering is performed on digest messages, which are
crafted internally by Mailman.

>>> mlist.filter_content = True
>>> msgdata = {'isdigest': True}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: image/jpeg
MIME-Version: 1.0
<BLANKLINE>
xxxxx
>>> dump_msgdata(msgdata)
isdigest: True

Simple multipart filtering

If one of the subparts in a multipart message matches the filter type,
then just that subpart will be stripped.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: multipart/mixed; boundary=BOUNDARY
... MIME-Version: 1.0
...
... --BOUNDARY
... Content-Type: image/jpeg
... MIME-Version: 1.0
...
... xxx
...
... --BOUNDARY
... Content-Type: image/gif
... MIME-Version: 1.0
...
... yyy
... --BOUNDARY--
... """)

>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: multipart/mixed; boundary=BOUNDARY
MIME-Version: 1.0
X-Content-Filtered-By: Mailman/MimeDel ...

--BOUNDARY
Content-Type: image/gif
MIME-Version: 1.0

yyy
--BOUNDARY--

Collapsing multipart/alternative messages

When content filtering encounters a multipart/alternative part, and the
results of filtering leave only one of the subparts, then the
multipart/alternative may be collapsed. For example, in the following
message, the outer content type is a multipart/mixed. Inside this part is
just a single subpart that has a content type of multipart/alternative.
This inner multipart has two subparts, a jpeg and a gif.

Content filtering will remove the jpeg part, leaving the
multipart/alternative with only a single gif subpart. Because there’s
only one subpart left, the MIME structure of the message will be reorganized,
removing the inner multipart/alternative so that the outer
multipart/mixed has just a single gif subpart.

>>> mlist.collapse_alternatives = True
>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: multipart/mixed; boundary=BOUNDARY
... MIME-Version: 1.0
...
... --BOUNDARY
... Content-Type: multipart/alternative; boundary=BOUND2
... MIME-Version: 1.0
...
... --BOUND2
... Content-Type: image/jpeg
... MIME-Version: 1.0
...
... xxx
...
... --BOUND2
... Content-Type: image/gif
... MIME-Version: 1.0
...
... yyy
... --BOUND2--
...
... --BOUNDARY--
... """)
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: multipart/mixed; boundary=BOUNDARY
MIME-Version: 1.0
X-Content-Filtered-By: Mailman/MimeDel ...
<BLANKLINE>
--BOUNDARY
Content-Type: image/gif
MIME-Version: 1.0
<BLANKLINE>
yyy
--BOUNDARY--
<BLANKLINE>

When the outer part is a multipart/alternative and filtering leaves this
outer part with just one subpart, the entire message is converted to the left
over part’s content type. In other words, the left over inner part is
promoted to being the outer part.

>>> mlist.filter_types = ['image/jpeg', 'text/html']
>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: multipart/alternative; boundary=AAA
...
... --AAA
... Content-Type: text/html
...
... This is some html
... --AAA
... Content-Type: text/plain
...
... This is plain text
... --AAA--
... """)

>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: text/plain
X-Content-Filtered-By: Mailman/MimeDel ...

This is plain text

Clean up.

>>> mlist.filter_types = ['image/jpeg']

Conversion to plain text

Some mailing lists prohibit HTML email, and in fact, such email can be a
phishing or spam vector. However, many mail readers will send HTML email by
default because users think it looks pretty. One approach to handling this
would be to filter out text/html parts and rely on
multipart/alternative collapsing to leave just a plain text part. This
works because many mail readers that send HTML email actually send a plain
text part in the second subpart of such multipart/alternatives.

While this is a good suggestion for plain text-only mailing lists, often a
mail reader will send only a text/html part with no plain text
alternative. in this case, the site administer can enable text/html to
text/plain conversion by defining a conversion command. A list
administrator still needs to enable such conversion for their list though.

>>> mlist.convert_html_to_plaintext = True

By default, Mailman sends the message through lynx, but since this program is
not guaranteed to exist, we’ll craft a simple, but stupid script to simulate
the conversion process. The script expects a single argument, which is the
name of the file containing the message payload to filter.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: text/html
... MIME-Version: 1.0
...
... <html><head></head>
... <body></body></html>
... """)

>>> from mailman.handlers.tests.test_mimedel import dummy_script
>>> with dummy_script():
... process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: text/plain
X-Content-Filtered-By: Mailman/MimeDel ...

Converted text/html to text/plain
Filename: ...

Discarding empty parts

Similarly, if after filtering a multipart section ends up empty, then the
entire multipart is discarded. For example, here’s a message where an inner
multipart/mixed contains two jpeg subparts. Both jpegs are filtered out,
so the entire inner multipart/mixed is discarded.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: multipart/mixed; boundary=AAA
...
... --AAA
... Content-Type: multipart/mixed; boundary=BBB
...
... --BBB
... Content-Type: image/jpeg
...
... xxx
... --BBB
... Content-Type: image/jpeg
...
... yyy
... --BBB---
... --AAA
... Content-Type: multipart/alternative; boundary=CCC
...
... --CCC
... Content-Type: text/html
...
... <h2>This is a header</h2>
...
... --CCC
... Content-Type: text/plain
...
... A different message
... --CCC--
... --AAA
... Content-Type: image/gif
...
... zzz
... --AAA
... Content-Type: image/gif
...
... aaa
... --AAA--
... """)

>>> with dummy_script():
... process(mlist, msg, {})

>>> print(msg.as_string())
From: aperson@example.com
Content-Type: multipart/mixed; boundary=AAA
X-Content-Filtered-By: Mailman/MimeDel ...

--AAA
MIME-Version: 1.0
Content-Type: text/plain

Converted text/html to text/plain
Filename: ...

--AAA
Content-Type: image/gif

zzz
--AAA
Content-Type: image/gif

aaa
--AAA--

Passing MIME types

XXX Describe the pass_mime_types setting and how it interacts with
filter_mime_types.

Calculating recipients

Every message that makes it through to the list membership gets sent to a set
of recipient addresses. These addresses are calculated by one of the handler
modules and depends on a host of factors.

>>> mlist = create_list('test@example.com')

Recipients are calculate from the list membership, so first some people
subscribe to the mailing list…

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> address_a = user_manager.create_address('aperson@example.com')
>>> address_b = user_manager.create_address('bperson@example.com')
>>> address_c = user_manager.create_address('cperson@example.com')
>>> address_d = user_manager.create_address('dperson@example.com')
>>> address_e = user_manager.create_address('eperson@example.com')
>>> address_f = user_manager.create_address('fperson@example.com')

…then subscribe these addresses to the mailing list as members…

>>> from mailman.interfaces.member import MemberRole
>>> member_a = mlist.subscribe(address_a, MemberRole.member)
>>> member_b = mlist.subscribe(address_b, MemberRole.member)
>>> member_c = mlist.subscribe(address_c, MemberRole.member)
>>> member_d = mlist.subscribe(address_d, MemberRole.member)
>>> member_e = mlist.subscribe(address_e, MemberRole.member)
>>> member_f = mlist.subscribe(address_f, MemberRole.member)

…then make some of the members digest members.

>>> from mailman.interfaces.member import DeliveryMode
>>> member_d.preferences.delivery_mode = DeliveryMode.plaintext_digests
>>> member_e.preferences.delivery_mode = DeliveryMode.mime_digests
>>> member_f.preferences.delivery_mode = DeliveryMode.summary_digests

Regular delivery recipients

Regular delivery recipients are those people who get messages from the list as
soon as they are posted. In other words, these folks are not digest members.

>>> msg = message_from_string("""\
... From: Xavier Person <xperson@example.com>
...
... Something of great import.
... """)
>>> msgdata = {}
>>> handler = config.handlers['member-recipients']
>>> handler.process(mlist, msg, msgdata)
>>> dump_list(msgdata['recipients'])
aperson@example.com
bperson@example.com
cperson@example.com

Members can elect not to receive a list copy of their own postings.

>>> member_c.preferences.receive_own_postings = False
>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
...
... Something of great import.
... """)
>>> msgdata = {}
>>> handler.process(mlist, msg, msgdata)
>>> dump_list(msgdata['recipients'])
aperson@example.com
bperson@example.com

Members can also elect not to receive a list copy of any message on which they
are explicitly named as a recipient. However, see the avoid duplicates
handler for details.

Digest recipients

XXX Test various digest deliveries.

Urgent messages

	XXX Test various urgent deliveries:

	
	test_urgent_moderator()

	test_urgent_admin()

	test_urgent_reject()

NNTP Gateway

Mailman has an NNTP gateway, whereby messages posted to the mailing list can
be forwarded onto an NNTP newsgroup.

>>> mlist = create_list('test@example.com')

Gatewaying from the mailing list to the newsgroup happens through a separate
nntp queue and happen immediately when the message is posted through to
the list. Note that gatewaying from the newsgroup to the list happens via a
separate process.

There are several situations which prevent a message from being gatewayed to
the newsgroup. The feature could be disabled, as is the default.

>>> mlist.gateway_to_news = False
>>> msg = message_from_string("""\
... Subject: An important message
...
... Something of great import.
... """)

>>> handler = config.handlers['to-usenet']
>>> handler.process(mlist, msg, {})
>>> from mailman.testing.helpers import get_queue_messages
>>> get_queue_messages('nntp')
[]

Even if enabled, messages that came from the newsgroup are never gated back to
the newsgroup.

>>> mlist.gateway_to_news = True
>>> handler.process(mlist, msg, dict(fromusenet=True))
>>> get_queue_messages('nntp')
[]

Neither are digests ever gated to the newsgroup.

>>> handler.process(mlist, msg, dict(isdigest=True))
>>> get_queue_messages('nntp')
[]

However, other posted messages get gated to the newsgroup via the nntp queue.
The list owner can set the linked newsgroup and the nntp host that its
messages are gated to.

>>> mlist.linked_newsgroup = 'comp.lang.thing'
>>> mlist.nntp_host = 'news.example.com'
>>> handler.process(mlist, msg, {})
>>> messages = get_queue_messages('nntp')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: An important message

Something of great import.

>>> dump_msgdata(messages[0].msgdata)
_parsemsg: False
listid : test.example.com
version : 3

List owner recipients

When a message is posted to a mailing list’s -owners address, all of the
list’s administrators will receive a copy. The administrators are defined as
the set of owners and moderators.

>>> mlist_1 = create_list('alpha@example.com')

Anne is the owner of the list and Bart is a moderator of the list.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)
>>> anne_addr = user_manager.create_address('anne@example.com')
>>> bart_addr = user_manager.create_address('bart@example.com')
>>> from mailman.interfaces.member import MemberRole
>>> anne = mlist_1.subscribe(anne_addr, MemberRole.owner)
>>> bart = mlist_1.subscribe(bart_addr, MemberRole.moderator)

The recipients list for the -owners address includes both Anne and Bart.

>>> msg = message_from_string("""\
... From: Xavier Person <xperson@example.com>
... To: alpha@example.com
...
... """)
>>> msgdata = {}
>>> handler = config.handlers['owner-recipients']
>>> handler.process(mlist_1, msg, msgdata)
>>> dump_list(msgdata['recipients'])
anne@example.com
bart@example.com

Anne disables her owner delivery, so she will not receive -owner emails.

>>> from mailman.interfaces.member import DeliveryStatus
>>> anne.preferences.delivery_status = DeliveryStatus.by_user
>>> msgdata = {}
>>> handler.process(mlist_1, msg, msgdata)
>>> dump_list(msgdata['recipients'])
bart@example.com

If Bart also disables his owner delivery, then no one could contact the list’s
owners. Since this is unacceptable, the site owner is used as a fallback.

>>> bart.preferences.delivery_status = DeliveryStatus.by_user
>>> msgdata = {}
>>> handler.process(mlist_1, msg, msgdata)
>>> dump_list(msgdata['recipients'])
noreply@example.com

For mailing lists which have no owners at all, the site owner is also used as
a fallback.

>>> mlist_2 = create_list('beta@example.com')
>>> print(mlist_2.administrators.member_count)
0
>>> msgdata = {}
>>> handler.process(mlist_2, msg, msgdata)
>>> dump_list(msgdata['recipients'])
noreply@example.com

Reply-to munging

Messages that flow through the global pipeline get their headers cooked,
which basically means that their headers go through several mostly unrelated
transformations. Some headers get added, others get changed. Some of these
changes depend on mailing list settings and others depend on how the message
is getting sent through the system. We’ll take things one-by-one.

>>> mlist = create_list('_xtest@example.com')

Reply-to munging refers to the behavior where a mailing list can be
configured to change or augment an existing Reply-To header in a message
posted to the list. Reply-to munging is fairly controversial, with arguments
made either for or against munging.

The Mailman developers, and I believe the majority consensus is to do no
reply-to munging, under several principles. Primarily, most reply-to munging
is requested by people who do not have both a Reply and Reply All button
on their mail reader. If you do not munge Reply-To, then these buttons
will work properly, but if you munge the header, it is impossible for these
buttons to work right, because both will reply to the list. This leads to
unfortunate accidents where a private message is accidentally posted to the
entire list.

However, Mailman gives list owners the option to do reply-To munging anyway,
mostly as a way to shut up the really vocal minority who seem to insist on
this mis-feature.

Reply to list

A list can be configured to add a Reply-To header pointing back to the
mailing list’s posting address. If there’s no Reply-To header in the
original message, the list’s posting address simply gets inserted.

>>> from mailman.interfaces.mailinglist import ReplyToMunging
>>> mlist.reply_goes_to_list = ReplyToMunging.point_to_list
>>> mlist.preferred_language = 'en'
>>> mlist.description = ''
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)

>>> from mailman.handlers.cook_headers import process
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
_xtest@example.com

It’s also possible to strip any existing Reply-To header first, before
adding the list’s posting address.

>>> mlist.first_strip_reply_to = True
>>> msg = message_from_string("""\
... From: aperson@example.com
... Reply-To: bperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
_xtest@example.com

If you don’t first strip the header, then the list’s posting address will just
get appended to whatever the original version was.

>>> mlist.first_strip_reply_to = False
>>> msg = message_from_string("""\
... From: aperson@example.com
... Reply-To: bperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
bperson@example.com, _xtest@example.com

Explicit Reply-To

The list can also be configured to have an explicit Reply-To header.

>>> mlist.reply_goes_to_list = ReplyToMunging.explicit_header
>>> mlist.reply_to_address = 'my-list@example.com'
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
my-list@example.com

And as before, it’s possible to either strip any existing Reply-To
header…

>>> mlist.first_strip_reply_to = True
>>> msg = message_from_string("""\
... From: aperson@example.com
... Reply-To: bperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
my-list@example.com

…or not.

>>> mlist.first_strip_reply_to = False
>>> msg = message_from_string("""\
... From: aperson@example.com
... Reply-To: bperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
my-list@example.com, bperson@example.com

Automatic response handler

Mailman has a autoreply handler that sends automatic responses to messages it
receives on its posting address, owner address, or robot address. Automatic
responses are subject to various conditions, such as headers in the original
message or the amount of time since the last auto-response.

>>> mlist = create_list('_xtest@example.com')
>>> mlist.display_name = 'XTest'

Basic automatic responding

Basic automatic responding occurs when the list is set up to respond to either
its -owner address, its -request address, or to the posting address,
and a message is sent to one of these addresses. A mailing list also has an
automatic response grace period which specifies how much time must pass before
a second response will be sent, with 0 meaning “there is no grace period”.

>>> from datetime import timedelta
>>> from mailman.interfaces.autorespond import ResponseAction

>>> mlist.autorespond_owner = ResponseAction.respond_and_continue
>>> mlist.autoresponse_grace_period = timedelta()
>>> mlist.autoresponse_owner_text = 'owner autoresponse text'

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest-owner@example.com
...
... help
... """)

The preceding message to the mailing list’s owner will trigger an automatic
response.

>>> from mailman.testing.helpers import get_queue_messages

>>> handler = config.handlers['replybot']
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : _xtest.example.com
nodecorate : True
recipients : {'aperson@example.com'}
reduced_list_headers: True
version : 3

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Auto-response for your message to the "XTest" mailing list
From: _xtest-bounces@example.com
To: aperson@example.com
X-Mailer: The Mailman Replybot
X-Ack: No
Message-ID: <...>
Date: ...
Precedence: bulk

owner autoresponse text

Short circuiting

Several headers in the original message determine whether an automatic
response should even be sent. For example, if the message has an
X-Ack: No header, no auto-response is sent.

>>> msg = message_from_string("""\
... From: aperson@example.com
... X-Ack: No
...
... help me
... """)

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> get_queue_messages('virgin')
[]

Mailman itself can suppress automatic responses for certain types of
internally crafted messages, by setting the noack metadata key.

>>> msg = message_from_string("""\
... From: mailman@example.com
...
... help for you
... """)

>>> handler.process(mlist, msg, dict(noack=True, to_owner=True))
>>> get_queue_messages('virgin')
[]

If there is a Precedence: header with any of the values bulk,
junk, or list, then the automatic response is also suppressed.

>>> msg = message_from_string("""\
... From: asystem@example.com
... Precedence: bulk
...
... hey!
... """)

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> get_queue_messages('virgin')
[]

>>> msg.replace_header('precedence', 'junk')
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> get_queue_messages('virgin')
[]

>>> msg.replace_header('precedence', 'list')
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> get_queue_messages('virgin')
[]

Unless the X-Ack: header has a value of yes, in which case, the
Precedence header is ignored.

>>> msg['X-Ack'] = 'yes'
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : _xtest.example.com
nodecorate : True
recipients : {'asystem@example.com'}
reduced_list_headers: True
version : 3

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Auto-response for your message to the "XTest" mailing list
From: _xtest-bounces@example.com
To: asystem@example.com
X-Mailer: The Mailman Replybot
X-Ack: No
Message-ID: <...>
Date: ...
Precedence: bulk

owner autoresponse text

Available auto-responses

As shown above, a message sent to the -owner address will get an
auto-response with the text set for owner responses. Two other types of email
will get auto-responses: those sent to the -request address…

>>> mlist.autorespond_requests = ResponseAction.respond_and_continue
>>> mlist.autoresponse_request_text = 'robot autoresponse text'

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest-request@example.com
...
... help me
... """)

>>> handler.process(mlist, msg, dict(to_request=True))
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Auto-response for your message to the "XTest" mailing list
From: _xtest-bounces@example.com
To: aperson@example.com
X-Mailer: The Mailman Replybot
X-Ack: No
Message-ID: <...>
Date: ...
Precedence: bulk

robot autoresponse text

…and those sent to the posting address.

>>> mlist.autorespond_postings = ResponseAction.respond_and_continue
>>> mlist.autoresponse_postings_text = 'postings autoresponse text'

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com
...
... help me
... """)

>>> handler.process(mlist, msg, dict(to_list=True))
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Auto-response for your message to the "XTest" mailing list
From: _xtest-bounces@example.com
To: aperson@example.com
X-Mailer: The Mailman Replybot
X-Ack: No
Message-ID: <...>
Date: ...
Precedence: bulk

postings autoresponse text

Grace periods

Automatic responses have a grace period, during which no additional responses
will be sent. This is so as not to bombard the sender with responses. The
grace period is measured in days.

>>> mlist.autoresponse_grace_period = timedelta(days=10)

When a response is sent to a person via any of the owner, request, or postings
addresses, the response date is recorded. The grace period is usually
measured in days.

>>> msg = message_from_string("""\
... From: bperson@example.com
... To: _xtest-owner@example.com
...
... help
... """)

This is the first response to bperson, so it gets sent.

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> len(get_queue_messages('virgin'))
1

But with a grace period greater than zero, no subsequent response will be sent
right now.

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> len(get_queue_messages('virgin'))
0

Fast forward 9 days and you still don’t get a response.

>>> from mailman.utilities.datetime import factory
>>> factory.fast_forward(days=9)

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> len(get_queue_messages('virgin'))
0

But tomorrow, the sender will get a new auto-response.

>>> factory.fast_forward()
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> len(get_queue_messages('virgin'))
1

Of course, everything works the same way for messages to the request
address, even if the sender is the same person…

>>> msg = message_from_string("""\
... From: bperson@example.com
... To: _xtest-request@example.com
...
... help
... """)

>>> handler.process(mlist, msg, dict(to_request=True))
>>> len(get_queue_messages('virgin'))
1

>>> handler.process(mlist, msg, dict(to_request=True))
>>> len(get_queue_messages('virgin'))
0

>>> factory.fast_forward(days=9)
>>> handler.process(mlist, msg, dict(to_request=True))
>>> len(get_queue_messages('virgin'))
0

>>> factory.fast_forward()
>>> handler.process(mlist, msg, dict(to_request=True))
>>> len(get_queue_messages('virgin'))
1

…and for messages to the posting address.

>>> msg = message_from_string("""\
... From: bperson@example.com
... To: _xtest@example.com
...
... help
... """)

>>> handler.process(mlist, msg, dict(to_list=True))
>>> len(get_queue_messages('virgin'))
1

>>> handler.process(mlist, msg, dict(to_list=True))
>>> len(get_queue_messages('virgin'))
0

>>> factory.fast_forward(days=9)
>>> handler.process(mlist, msg, dict(to_list=True))
>>> len(get_queue_messages('virgin'))
0

>>> factory.fast_forward()
>>> handler.process(mlist, msg, dict(to_list=True))
>>> len(get_queue_messages('virgin'))
1

RFC 2919 and 2369 headers

RFC 2919 [http://www.faqs.org/rfcs/rfc2919.html] and RFC 2369 [http://www.faqs.org/rfcs/rfc2369.html] define headers for mailing list actions. These
headers generally start with the List- prefix.

>>> mlist = create_list('test@example.com')
>>> mlist.preferred_language = 'en'
>>> from mailman.interfaces.archiver import ArchivePolicy
>>> mlist.archive_policy = ArchivePolicy.never

The rfc-2369 handler adds the List- headers. List-Id is always added.

>>> from mailman.handlers.rfc_2369 import process
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg, 'list-id')
---start---
list-id: <test.example.com>
---end---

Fewer headers

Some people don’t like these headers because their mail readers aren’t good
about hiding them. A list owner can turn these headers off.

>>> mlist.include_rfc2369_headers = False
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg)
---start---
---end---

Messages which Mailman generates itself, such as user or owner notifications,
have a reduced set of List- headers. Specifically, there is no List-Post,
List-Archive or Archived-At header.
..

>>> mlist.include_rfc2369_headers = True
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)

>>> process(mlist, msg, dict(reduced_list_headers=True))
>>> list_headers(msg)
---start---
list-help: <mailto:test-request@example.com?subject=help>
list-id: <test.example.com>
list-subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
list-unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
---end---

List-Post header

Discussion lists, to which any subscriber can post, also have a List-Post
header which contains the mailto: URL used to send messages to the list.

>>> mlist.include_rfc2369_headers = True
>>> mlist.allow_list_posts = True
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg)
---start---
list-help: <mailto:test-request@example.com?subject=help>
list-id: <test.example.com>
list-post: <mailto:test@example.com>
list-subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
list-unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
---end---

Some mailing lists are announce, or one-way lists, not discussion lists.
Because the general membership cannot post to these mailing lists, the list
owner can set a flag which adds a special List-Post header value, according
to RFC 2369.

>>> mlist.allow_list_posts = False
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg)
---start---
list-help: <mailto:test-request@example.com?subject=help>
list-id: <test.example.com>
list-post: NO
list-subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
list-unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
---end---

List-Id header

If the mailing list has a description, then it is included in the List-Id
header.

>>> mlist.allow_list_posts = True
>>> mlist.description = 'My test mailing list'
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg)
---start---
list-help: <mailto:test-request@example.com?subject=help>
list-id: My test mailing list <test.example.com>
list-post: <mailto:test@example.com>
list-subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
list-unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
---end---

Any existing List-Id headers are removed from the original message.

>>> msg = message_from_string("""\
... From: aperson@example.com
... List-ID: <123.456.789>
...
... """)

>>> process(mlist, msg, {})
>>> list_headers(msg, only='list-id')
---start---
list-id: My test mailing list <test.example.com>
---end---

Archive headers

When the mailing list is configured to enable archiving, List-Archive
headers will be added for each web accessible archiver that is enabled.

RFC 5064 [http://www.faqs.org/rfcs/rfc5064.html] defines the Archived-At header which contains the url to the
individual message in the archives. Archivers which don’t support
pre-calculation of the archive url cannot add the Archived-At header.
However, other archivers can calculate the url, and do add this header.

If the mailing list isn’t being archived, neither the List-Archive nor
Archived-At headers will be added.

Subject prefixes

Mailing lists can define a subject prefix which gets added to the front of
any Subject text. This can be used to quickly identify which mailing list
the message was posted to.

>>> mlist = create_list('test@example.com')

The default list style gives the mailing list a default prefix.

>>> print(mlist.subject_prefix)
[Test]

This can be changed to anything, but typically ends with a trailing space.

>>> mlist.subject_prefix = '[XTest] '
>>> process = config.handlers['subject-prefix'].process

No Subject

If the original message has no Subject, then a canned one is used.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] (no subject)

Inserting a prefix

If the original message had a Subject header, then the prefix is inserted
at the beginning of the header’s value.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: Something important
...
... A message of great import.
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg['subject'])
[XTest] Something important

The original Subject is available in the metadata.

>>> print(msgdata['original_subject'])
Something important

If a Subject header already has a prefix, usually following a Re:
marker, another one will not be added but the prefix will be moved to the
front of the header text.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: Re: [XTest] Something important
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] Re: Something important

If the Subject header has a prefix at the front of the header text, that’s
where it will stay.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: [XTest] Re: Something important
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] Re: Something important

Sometimes the incoming Subject header has a pathological sequence of
Re: like markers. These should all be collapsed up to the first non-Re:
marker.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: [XTest] Re: RE : Re: Re: Re: Re: Re: Something important
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] Re: Something important

Internationalized headers

Internationalization adds some interesting twists to the handling of subject
prefixes. Part of what makes this interesting is the encoding of i18n headers
using RFC 2047, and lists whose preferred language is in a different character
set than the encoded header.

>>> msg = message_from_string("""\
... Subject: =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest] =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(str(msg['subject']))
[XTest] メールマン

Prefix numbers

Subject prefixes support a placeholder for the numeric post id. Every time a
message is posted to the mailing list, a post id gets incremented. This is
a purely sequential integer that increases monotonically. By added a %d
placeholder to the subject prefix, this post id can be included in the prefix.

>>> mlist.subject_prefix = '[XTest %d] '
>>> mlist.post_id = 456
>>> msg = message_from_string("""\
... Subject: Something important
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest 456] Something important

This works even when the message is a reply, except that in this case, the
numeric post id in the generated subject prefix is updated with the new post
id.

>>> msg = message_from_string("""\
... Subject: [XTest 123] Re: Something important
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest 456] Re: Something important

If the Subject header had old style prefixing, the prefix is moved to the
front of the header text.

>>> msg = message_from_string("""\
... Subject: Re: [XTest 123] Something important
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest 456] Re: Something important

And of course, the proper thing is done when posting id numbers are included
in the subject prefix, and the subject is encoded non-ASCII.

>>> msg = message_from_string("""\
... Subject: =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest 456] =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(msg['subject'])
[XTest 456] メールマン

Even more fun is when the internationalized Subject header already has a
prefix, possibly with a different posting number.

>>> msg = message_from_string("""\
... Subject: [XTest 123] Re: =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest 456] Re: =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(msg['subject'])
[XTest 456] Re: メールマン

As before, old style subject prefixes are re-ordered.

>>> msg = message_from_string("""\
... Subject: Re: [XTest 123] =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest 456] Re:
 =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(msg['subject'])
[XTest 456] Re: メールマン

In this test case, we get an extra space between the prefix and the original
subject. It’s because the original is crooked. Note that a Subject
starting with ‘n ‘ is generated by some version of Eudora Japanese edition.

>>> mlist.subject_prefix = '[XTest] '
>>> msg = message_from_string("""\
... Subject:
... Important message
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] Important message

And again, with an RFC 2047 encoded header.

>>> msg = message_from_string("""\
... Subject:
... =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest] =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(msg['subject'])
[XTest] メールマン

Message tagger

Mailman has a topics system which works like this: a mailing list
administrator sets up one or more topics, which is essentially a named regular
expression. The topic name can be any arbitrary string, and the name serves
double duty as the topic tag. Each message that flows the mailing list has
its Subject: and Keywords: headers compared against these regular
expressions. The message then gets tagged with the topic names of each hit.

>>> mlist = create_list('_xtest@example.com')

Topics must be enabled for Mailman to do any topic matching, even if topics
are defined.

>>> mlist.topics = [('bar fight', '.*bar.*', 'catch any bars', False)]
>>> mlist.topics_enabled = False
>>> mlist.topics_bodylines_limit = 0

>>> msg = message_from_string("""\
... Subject: foobar
... Keywords: barbaz
...
... """)
>>> msgdata = {}

>>> from mailman.handlers.tagger import process
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
Subject: foobar
Keywords: barbaz

>>> msgdata
{}

However, once topics are enabled, message will be tagged. There are two
artifacts of tagging; an X-Topics: header is added with the topic name,
and the message metadata gets a key with a list of matching topic names.

>>> mlist.topics_enabled = True
>>> msg = message_from_string("""\
... Subject: foobar
... Keywords: barbaz
...
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
Subject: foobar
Keywords: barbaz
X-Topics: bar fight
<BLANKLINE>
<BLANKLINE>
>>> msgdata['topichits']
['bar fight']

Scanning body lines

The tagger can also look at a certain number of body lines, but only for
Subject: and Keyword: header-like lines. When set to zero, no body
lines are scanned.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: nothing
... Keywords: at all
...
... X-Ignore: something else
... Subject: foobar
... Keywords: barbaz
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Subject: nothing
Keywords: at all
<BLANKLINE>
X-Ignore: something else
Subject: foobar
Keywords: barbaz
<BLANKLINE>
>>> msgdata
{}

But let the tagger scan a few body lines and the matching headers will be
found.

>>> mlist.topics_bodylines_limit = 5
>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: nothing
... Keywords: at all
...
... X-Ignore: something else
... Subject: foobar
... Keywords: barbaz
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Subject: nothing
Keywords: at all
X-Topics: bar fight
<BLANKLINE>
X-Ignore: something else
Subject: foobar
Keywords: barbaz
<BLANKLINE>
>>> msgdata['topichits']
['bar fight']

However, scanning stops at the first body line that doesn’t look like a
header.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: nothing
... Keywords: at all
...
... This is not a header
... Subject: foobar
... Keywords: barbaz
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Subject: nothing
Keywords: at all
<BLANKLINE>
This is not a header
Subject: foobar
Keywords: barbaz
>>> msgdata
{}

When set to a negative number, all body lines will be scanned.

>>> mlist.topics_bodylines_limit = -1
>>> lots_of_headers = '\n'.join(['X-Ignore: zip'] * 100)
>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: nothing
... Keywords: at all
...
... %s
... Subject: foobar
... Keywords: barbaz
... """ % lots_of_headers)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> # Rather than print out 100 X-Ignore: headers, let's just prove that
>>> # the X-Topics: header exists, meaning that the tagger did its job.
>>> print(msg['x-topics'])
bar fight
>>> msgdata['topichits']
['bar fight']

Scanning sub-parts

The tagger will also scan the body lines of text subparts in a multipart
message, using the same rules as if all those body lines lived in a single
text payload.

>>> msg = message_from_string("""\
... Subject: Was
... Keywords: Raw
... Content-Type: multipart/alternative; boundary="BOUNDARY"
...
... --BOUNDARY
... From: sabo
... To: obas
...
... Subject: farbaw
... Keywords: barbaz
...
... --BOUNDARY--
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
Subject: Was
Keywords: Raw
Content-Type: multipart/alternative; boundary="BOUNDARY"
X-Topics: bar fight
<BLANKLINE>
--BOUNDARY
From: sabo
To: obas
<BLANKLINE>
Subject: farbaw
Keywords: barbaz
<BLANKLINE>
--BOUNDARY--
<BLANKLINE>
>>> msgdata['topichits']
['bar fight']

But the tagger will not descend into non-text parts.

>>> msg = message_from_string("""\
... Subject: Was
... Keywords: Raw
... Content-Type: multipart/alternative; boundary=BOUNDARY
...
... --BOUNDARY
... From: sabo
... To: obas
... Content-Type: message/rfc822
...
... Subject: farbaw
... Keywords: barbaz
...
... --BOUNDARY
... From: sabo
... To: obas
... Content-Type: message/rfc822
...
... Subject: farbaw
... Keywords: barbaz
...
... --BOUNDARY--
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg['x-topics'])
None
>>> msgdata
{}

The outgoing handler

Mailman’s outgoing queue is used as the wrapper around SMTP delivery to the
upstream mail server. The to-outgoing handler does little more than drop the
message into the outgoing queue.

>>> mlist = create_list('test@example.com')

Craft a message destined for the outgoing queue. Include some random metadata
as if this message had passed through some other handlers.

>>> msg = message_from_string("""\
... Subject: Here is a message
...
... Something of great import.
... """)

>>> msgdata = dict(foo=1, bar=2, verp=True)
>>> handler = config.handlers['to-outgoing']
>>> handler.process(mlist, msg, msgdata)

While the queued message will not be changed, the queued metadata will have an
additional key set: the mailing list name.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('out')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
Subject: Here is a message
<BLANKLINE>
Something of great import.
>>> dump_msgdata(messages[0].msgdata)
_parsemsg: False
bar : 2
foo : 1
listid : test.example.com
verp : True
version : 3

Addresses

The REST API can be used to manage addresses.

There are no addresses yet.

>>> dump_json('http://localhost:9001/3.0/addresses')
http_etag: "..."
start: 0
total_size: 0

When an address is created via the internal API, it is available in the REST
API.

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)
>>> anne = user_manager.create_address('anne@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/addresses')
entry 0:
 email: anne@example.com
 http_etag: "..."
 original_email: anne@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/anne@example.com
http_etag: "..."
start: 0
total_size: 1

Anne’s address can also be accessed directly.

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com')
email: anne@example.com
http_etag: "..."
original_email: anne@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/anne@example.com

Bart registers with a mixed-case address. The canonical URL always includes
the lower-case version.

>>> bart = user_manager.create_address('Bart.Person@example.com')
>>> transaction.commit()
>>> dump_json(
... 'http://localhost:9001/3.0/addresses/bart.person@example.com')
email: bart.person@example.com
http_etag: "..."
original_email: Bart.Person@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/bart.person@example.com

But his address record can be accessed with the case-preserved version too.

>>> dump_json(
... 'http://localhost:9001/3.0/addresses/Bart.Person@example.com')
email: bart.person@example.com
http_etag: "..."
original_email: Bart.Person@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/bart.person@example.com

When an address has a real name associated with it, this is also available in
the REST API.

>>> cris = user_manager.create_address('cris@example.com', 'Cris Person')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com')
display_name: Cris Person
email: cris@example.com
http_etag: "..."
original_email: cris@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/cris@example.com

Verifying

When the address gets verified, this attribute is available in the REST
representation.

>>> from mailman.utilities.datetime import now
>>> anne.verified_on = now()
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com')
email: anne@example.com
http_etag: "..."
original_email: anne@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/anne@example.com
verified_on: 2005-08-01T07:49:23

Addresses can also be verified through the REST API, by POSTing to the
‘verify’ sub-resource. The POST data is ignored.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'cris@example.com/verify', {})
content-length: 0
date: ...
server: ...
status: 204

Now Cris’s address is verified.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com')
display_name: Cris Person
email: cris@example.com
http_etag: "..."
original_email: cris@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/cris@example.com
verified_on: 2005-08-01T07:49:23

If you should ever need to ‘unverify’ an address, POST to the ‘unverify’
sub-resource. Again, the POST data is ignored.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'cris@example.com/unverify', {})
content-length: 0
date: ...
server: ...
status: 204

Now Cris’s address is unverified.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com')
display_name: Cris Person
email: cris@example.com
http_etag: "..."
original_email: cris@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/cris@example.com

The user

To link an address to a user, a POST request can be sent to the /user
sub-resource of the address. If the user does not exist, it will be created.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user',
... {'display_name': 'Cris X. Person'})
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/1
server: ...
status: 201

The user is now created and the address is linked to it:

>>> cris.user
<User "Cris X. Person" (1) at 0x...>
>>> cris_user = user_manager.get_user('cris@example.com')
>>> cris_user
<User "Cris X. Person" (1) at 0x...>
>>> cris.user == cris_user
True
>>> [a.email for a in cris_user.addresses]
['cris@example.com']

A link to the user resource is now available as a sub-resource.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com')
display_name: Cris Person
email: cris@example.com
http_etag: "..."
original_email: cris@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/cris@example.com
user: http://localhost:9001/3.0/users/1

To prevent automatic user creation from taking place, add the auto_create
parameter to the POST request and set it to a false-equivalent value like 0:

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com/user',
... {'display_name': 'Anne User', 'auto_create': 0})
Traceback (most recent call last):
...
urllib.error.HTTPError: HTTP Error 403: ...

A request to the /user sub-resource will return the linked user’s
representation:

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user')
created_on: 2005-08-01T07:49:23
display_name: Cris X. Person
http_etag: "..."
is_server_owner: False
password: ...
self_link: http://localhost:9001/3.0/users/1
user_id: 1

The address and the user can be unlinked by sending a DELETE request on the
/user resource. The user itself is not deleted, only the link.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204
>>> transaction.abort()
>>> cris.user == None
True
>>> from uuid import UUID
>>> user_manager.get_user_by_id(UUID(int=1))
<User "Cris X. Person" (1) at 0x...>
>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user')
Traceback (most recent call last):
...
urllib.error.HTTPError: HTTP Error 404: ...

You can link an existing user to an address by passing the user’s ID in the
POST request.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user',
... {'user_id': 1})
content-length: 0
date: ...
server: ...
status: 200
>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user')
created_on: ...
display_name: Cris X. Person
http_etag: ...
password: ...
self_link: http://localhost:9001/3.0/users/1
user_id: 1

To link an address to a different user, you can either send a DELETE request
followed by a POST request, or you can send a PUT request.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user',
... {'display_name': 'Cris Q Person'}, method="PUT")
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/2
server: ...
status: 201
>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user')
created_on: ...
display_name: Cris Q Person
http_etag: ...
password: ...
self_link: http://localhost:9001/3.0/users/2
user_id: 2

User addresses

Users control addresses. The canonical URLs for these user-controlled
addresses live in the /addresses namespace.

>>> dave = user_manager.create_user('dave@example.com', 'Dave Person')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/users/dave@example.com/addresses')
entry 0:
 display_name: Dave Person
 email: dave@example.com
 http_etag: "..."
 original_email: dave@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/dave@example.com
 user: http://localhost:9001/3.0/users/3
http_etag: "..."
start: 0
total_size: 1

>>> dump_json('http://localhost:9001/3.0/addresses/dave@example.com')
display_name: Dave Person
email: dave@example.com
http_etag: "..."
original_email: dave@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/dave@example.com
user: http://localhost:9001/3.0/users/3

A user can be associated with multiple email addresses. You can add new
addresses to an existing user.

>>> dump_json(
... 'http://localhost:9001/3.0/users/dave@example.com/addresses', {
... 'email': 'dave.person@example.org'
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/addresses/dave.person@example.org
server: ...
status: 201

When you add the new address, you can give it an optional display name.

>>> dump_json(
... 'http://localhost:9001/3.0/users/dave@example.com/addresses', {
... 'email': 'dp@example.org',
... 'display_name': 'Davie P',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/addresses/dp@example.org
server: ...
status: 201

The user controls these new addresses.

>>> dump_json('http://localhost:9001/3.0/users/dave@example.com/addresses')
entry 0:
 email: dave.person@example.org
 http_etag: "..."
 original_email: dave.person@example.org
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/dave.person@example.org
 user: http://localhost:9001/3.0/users/3
entry 1:
 display_name: Dave Person
 email: dave@example.com
 http_etag: "..."
 original_email: dave@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/dave@example.com
 user: http://localhost:9001/3.0/users/3
entry 2:
 display_name: Davie P
 email: dp@example.org
 http_etag: "..."
 original_email: dp@example.org
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/dp@example.org
 user: http://localhost:9001/3.0/users/3
http_etag: "..."
start: 0
total_size: 3

Memberships

Addresses can be subscribed to mailing lists. When they are, all the
membership records for that address are easily accessible via the REST API.

Elle registers several email addresses.

>>> elle = user_manager.create_user('elle@example.com', 'Elle Person')
>>> subscriber = list(elle.addresses)[0]
>>> elle.register('eperson@example.com')
<Address: eperson@example.com [not verified] at ...>
>>> elle.register('elle.person@example.com')
<Address: elle.person@example.com [not verified] at ...>

Elle subscribes to two mailing lists with one of her addresses.

>>> ant = create_list('ant@example.com')
>>> bee = create_list('bee@example.com')
>>> ant.subscribe(subscriber)
<Member: Elle Person <elle@example.com> on ant@example.com
 as MemberRole.member>
>>> bee.subscribe(subscriber)
<Member: Elle Person <elle@example.com> on bee@example.com
 as MemberRole.member>
>>> transaction.commit()

Elle can get her memberships for each of her email addresses.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'elle@example.com/memberships')
entry 0:
 address: http://localhost:9001/3.0/addresses/elle@example.com
 delivery_mode: regular
 email: elle@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/4
entry 1:
 address: http://localhost:9001/3.0/addresses/elle@example.com
 delivery_mode: regular
 email: elle@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/4
http_etag: "..."
start: 0
total_size: 2

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'eperson@example.com/memberships')
http_etag: "..."
start: 0
total_size: 0

When Elle subscribes to the bee list again with a different address, this
does not show up in the list of memberships for his other address.

>>> subscriber = user_manager.get_address('eperson@example.com')
>>> bee.subscribe(subscriber)
<Member: eperson@example.com on bee@example.com as MemberRole.member>
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'elle@example.com/memberships')
entry 0:
 address: http://localhost:9001/3.0/addresses/elle@example.com
 delivery_mode: regular
 email: elle@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/4
entry 1:
 address: http://localhost:9001/3.0/addresses/elle@example.com
 delivery_mode: regular
 email: elle@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/4
http_etag: "..."
start: 0
total_size: 2

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'eperson@example.com/memberships')
entry 0:
 address: http://localhost:9001/3.0/addresses/eperson@example.com
 delivery_mode: regular
 email: eperson@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/4
http_etag: "..."
start: 0
total_size: 1

Deleting

Addresses can be deleted via the REST API.

>>> fred = user_manager.create_address('fred@example.com', 'Fred Person')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/addresses/fred@example.com')
display_name: Fred Person
email: fred@example.com
http_etag: "..."
original_email: fred@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/fred@example.com

>>> dump_json('http://localhost:9001/3.0/addresses/fred@example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204
>>> transaction.abort()

>>> print(user_manager.get_address('fred@example.com'))
None

If an address is linked to a user, deleting the address does not delete the
user, it just unlinks it.

>>> gwen = user_manager.create_user('gwen@example.com', 'Gwen Person')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/users/5/addresses')
entry 0:
 display_name: Gwen Person
 email: gwen@example.com
 http_etag: "..."
 original_email: gwen@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/gwen@example.com
 user: http://localhost:9001/3.0/users/5
http_etag: "795b0680c57ec2df3dceb68ccce2619fecdc7225"
start: 0
total_size: 1

>>> dump_json('http://localhost:9001/3.0/addresses/gwen@example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/users/5/addresses')
http_etag: "..."
start: 0
total_size: 0

REST server

Mailman exposes a REST HTTP server for administrative control.

The server listens for connections on a configurable host name and port.

It is always protected by HTTP basic authentication using a single global
user name and password. The credentials are set in the [webservice] section
of the configuration using the admin_user and admin_pass properties.

Because the REST server has full administrative access, it should always be
run only on localhost, unless you really know what you’re doing. In addition
you should set the user name and password to secure values and distribute them
to any REST clients with reasonable precautions.

The Mailman major and minor version numbers are in the URL.

Credentials

When the Authorization header contains the proper credentials, the request
succeeds.

>>> from httplib2 import Http
>>> headers = {
... 'Content-Type': 'application/x-www-form-urlencode',
... 'Authorization': 'Basic cmVzdGFkbWluOnJlc3RwYXNz',
... }
>>> url = 'http://localhost:9001/3.0/system/versions'
>>> response, content = Http().request(url, 'GET', None, headers)
>>> print(response.status)
200

Version information

System version information can be retrieved from the server, in the form of a
JSON encoded response.

>>> dump_json('http://localhost:9001/3.0/system/versions')
http_etag: "..."
mailman_version: GNU Mailman 3.0... (...)
python_version: ...
self_link: http://localhost:9001/3.0/system/versions

Domains

Domains are how Mailman interacts with email host names and web host names.

The test framework starts out with an example domain, so let's delete
that first.
>>> from mailman.interfaces.domain import IDomainManager
>>> from zope.component import getUtility
>>> domain_manager = getUtility(IDomainManager)

>>> domain_manager.remove('example.com')
<Domain example.com...>
>>> transaction.commit()

The REST API can be queried for the set of known domains, of which there are
initially none.

>>> dump_json('http://localhost:9001/3.0/domains')
http_etag: "..."
start: 0
total_size: 0

Once a domain is added, it is accessible through the API.

>>> domain_manager.add(
... 'example.com', 'An example domain', 'http://lists.example.com')
<Domain example.com, An example domain, base_url: http://lists.example.com>
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/domains')
entry 0:
 base_url: http://lists.example.com
 description: An example domain
 http_etag: "..."
 mail_host: example.com
 self_link: http://localhost:9001/3.0/domains/example.com
 url_host: lists.example.com
http_etag: "..."
start: 0
total_size: 1

At the top level, all domains are returned as separate entries.

>>> domain_manager.add(
... 'example.org',
... base_url='http://mail.example.org')
<Domain example.org, base_url: http://mail.example.org>
>>> domain_manager.add(
... 'lists.example.net',
... 'Porkmasters',
... 'http://example.net')
<Domain lists.example.net, Porkmasters, base_url: http://example.net>
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/domains')
entry 0:
 base_url: http://lists.example.com
 description: An example domain
 http_etag: "..."
 mail_host: example.com
 self_link: http://localhost:9001/3.0/domains/example.com
 url_host: lists.example.com
entry 1:
 base_url: http://mail.example.org
 description: None
 http_etag: "..."
 mail_host: example.org
 self_link: http://localhost:9001/3.0/domains/example.org
 url_host: mail.example.org
entry 2:
 base_url: http://example.net
 description: Porkmasters
 http_etag: "..."
 mail_host: lists.example.net
 self_link: http://localhost:9001/3.0/domains/lists.example.net
 url_host: example.net
http_etag: "..."
start: 0
total_size: 3

Individual domains

The information for a single domain is available by following one of the
self_links from the above collection.

>>> dump_json('http://localhost:9001/3.0/domains/lists.example.net')
base_url: http://example.net
description: Porkmasters
http_etag: "..."
mail_host: lists.example.net
self_link: http://localhost:9001/3.0/domains/lists.example.net
url_host: example.net

You can also list all the mailing lists for a given domain. At first, the
example.com domain does not contain any mailing lists.

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists')
http_etag: "..."
start: 0
total_size: 0

>>> dump_json('http://localhost:9001/3.0/lists', {
... 'fqdn_listname': 'test-domains@example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/lists/test-domains.example.com
...

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists')
entry 0:
 display_name: Test-domains
 fqdn_listname: test-domains@example.com
 http_etag: "..."
 ...
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/test-domains.example.com
 volume: 1
http_etag: "..."
start: 0
total_size: 1

Other domains continue to contain no mailing lists.

>>> dump_json('http://localhost:9001/3.0/domains/lists.example.net/lists')
http_etag: "..."
start: 0
total_size: 0

Creating new domains

New domains can be created by posting to the domains url.

>>> dump_json('http://localhost:9001/3.0/domains', {
... 'mail_host': 'lists.example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/domains/lists.example.com
...

Now the web service knows about our new domain.

>>> dump_json('http://localhost:9001/3.0/domains/lists.example.com')
base_url: http://lists.example.com
description: None
http_etag: "..."
mail_host: lists.example.com
self_link: http://localhost:9001/3.0/domains/lists.example.com
url_host: lists.example.com

And the new domain is in our database.

>>> domain_manager['lists.example.com']
<Domain lists.example.com, base_url: http://lists.example.com>

Unlock the database.
>>> transaction.abort()

You can also create a new domain with a description, a base url, and a contact
address.

>>> dump_json('http://localhost:9001/3.0/domains', {
... 'mail_host': 'my.example.com',
... 'description': 'My new domain',
... 'base_url': 'http://allmy.example.com'
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/domains/my.example.com
...

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com')
base_url: http://allmy.example.com
description: My new domain
http_etag: "..."
mail_host: my.example.com
self_link: http://localhost:9001/3.0/domains/my.example.com
url_host: allmy.example.com

>>> domain_manager['my.example.com']
<Domain my.example.com, My new domain, base_url: http://allmy.example.com>

Unlock the database.
>>> transaction.abort()

Deleting domains

Domains can also be deleted via the API.

>>> dump_json('http://localhost:9001/3.0/domains/lists.example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

Domain owners

Domains can have owners. By posting some addresses to the owners resource,
you can add some domain owners. Currently our domain has no owners:

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners')
http_etag: ...
start: 0
total_size: 0

Anne and Bart volunteer to be a domain owners.

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners', (
... ('owner', 'anne@example.com'), ('owner', 'bart@example.com')
...))
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners')
entry 0:
 created_on: 2005-08-01T07:49:23
 http_etag: ...
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
entry 1:
 created_on: 2005-08-01T07:49:23
 http_etag: ...
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/2
 user_id: 2
http_etag: ...
start: 0
total_size: 2

We can delete all the domain owners.

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

Now there are no owners.

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners')
http_etag: ...
start: 0
total_size: 0

New domains can be created with owners.

>>> dump_json('http://localhost:9001/3.0/domains', (
... ('mail_host', 'your.example.com'),
... ('owner', 'anne@example.com'),
... ('owner', 'bart@example.com'),
...))
content-length: 0
date: ...
location: http://localhost:9001/3.0/domains/your.example.com
server: ...
status: 201

The new domain has the expected owners.

>>> dump_json('http://localhost:9001/3.0/domains/your.example.com/owners')
entry 0:
 created_on: 2005-08-01T07:49:23
 http_etag: ...
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
entry 1:
 created_on: 2005-08-01T07:49:23
 http_etag: ...
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/2
 user_id: 2
http_etag: ...
start: 0
total_size: 2

REST API helpers

There are a number of helpers that make building out the REST API easier.

Resource paths

For example, most resources don’t have to worry about where they are rooted.
They only need to know where they are relative to the root URI, and this
function can return them the full path to the resource.

>>> from mailman.rest.helpers import path_to
>>> print(path_to('system'))
http://localhost:9001/3.0/system

Parameters like the scheme, host, port, and API version number can
be set in the configuration file.

>>> config.push('helpers', """
... [webservice]
... hostname: geddy
... port: 2112
... use_https: yes
... api_version: 4.2
... """)
>>> cleanups.append((config.pop, 'helpers'))

>>> print(path_to('system'))
https://geddy:2112/4.2/system

Etags

HTTP etags are a way for clients to decide whether their copy of a resource
has changed or not. Mailman’s REST API calculates this in a cheap and dirty
way. Pass in the dictionary representing the resource and that dictionary
gets modified to contain the etag under the http_etag key.

>>> from mailman.rest.helpers import etag
>>> resource = dict(geddy='bass', alex='guitar', neil='drums')
>>> json_data = etag(resource)
>>> print(resource['http_etag'])
"6929ecfbda2282980a4818fb75f82e812077f77a"

For convenience, the etag function also returns the JSON representation of the
dictionary after tagging, since that’s almost always what you want.

>>> import json
>>> data = json.loads(json_data)

This is pretty close to what we want, so it's convenient to use.
>>> dump_msgdata(data)
alex : guitar
geddy : bass
http_etag: "6929ecfbda2282980a4818fb75f82e812077f77a"
neil : drums

POST and PUT unpacking

Another helper unpacks POST and PUT request variables, validating and
converting their values.

>>> from mailman.rest.validator import Validator
>>> validator = Validator(one=int, two=str, three=bool)

>>> class FakeRequest:
... params = None
>>> FakeRequest.params = dict(one='1', two='two', three='yes')

On valid input, the validator can be used as a **keyword argument.

>>> def print_request(one, two, three):
... print(repr(one), repr(two), repr(three))
>>> print_request(**validator(FakeRequest))
1 'two' True

On invalid input, an exception is raised.

>>> FakeRequest.params['one'] = 'hello'
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Cannot convert parameters: one

On missing input, an exception is raised.

>>> del FakeRequest.params['one']
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Missing parameters: one

If more than one key is missing, it will be reflected in the error message.

>>> del FakeRequest.params['two']
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Missing parameters: one, two

Extra keys are also not allowed.

>>> FakeRequest.params = dict(one='1', two='two', three='yes',
... four='', five='')
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Unexpected parameters: five, four

However, if optional keys are missing, it’s okay.

>>> validator = Validator(one=int, two=str, three=bool,
... four=int, five=int,
... _optional=('four', 'five'))

>>> FakeRequest.params = dict(one='1', two='two', three='yes',
... four='4', five='5')
>>> def print_request(one, two, three, four=None, five=None):
... print(repr(one), repr(two), repr(three), repr(four), repr(five))
>>> print_request(**validator(FakeRequest))
1 'two' True 4 5

>>> del FakeRequest.params['four']
>>> print_request(**validator(FakeRequest))
1 'two' True None 5

>>> del FakeRequest.params['five']
>>> print_request(**validator(FakeRequest))
1 'two' True None None

But if the optional values are present, they must of course also be valid.

>>> FakeRequest.params = dict(one='1', two='two', three='yes',
... four='no', five='maybe')
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Cannot convert parameters: five, four

Arrays

Some POST forms include more than one value for a particular key. This is
how lists and arrays are modeled. The validator does the right thing with
such form data. Specifically, when a key shows up multiple times in the form
data, a list is given to the validator.

We can't use a normal dictionary because we'll have multiple keys, but
the validator only wants to call .items() on the object.
>>> class MultiDict:
... def __init__(self, *params): self.values = list(params)
... def items(self): return iter(self.values)
>>> form_data = MultiDict(
... ('one', '1'),
... ('many', '3'),
... ('many', '4'),
... ('many', '5'),
...)

This is a validation function that ensures the value is a list.

>>> def must_be_list(value):
... if not isinstance(value, list):
... raise ValueError('not a list')
... return [int(item) for item in value]

This is a validation function that ensure the value is not a list.

>>> def must_be_scalar(value):
... if isinstance(value, list):
... raise ValueError('is a list')
... return int(value)

And a validator to pull it all together.

>>> validator = Validator(one=must_be_scalar, many=must_be_list)
>>> FakeRequest.params = form_data
>>> values = validator(FakeRequest)
>>> print(values['one'])
1
>>> print(values['many'])
[3, 4, 5]

The list values are guaranteed to be in the same order they show up in the
form data.

>>> FakeRequest.params = MultiDict(
... ('one', '1'),
... ('many', '3'),
... ('many', '5'),
... ('many', '4'),
...)
>>> values = validator(FakeRequest)
>>> print(values['one'])
1
>>> print(values['many'])
[3, 5, 4]

Mailing list configuration

Mailing lists can be configured via the REST API.

>>> mlist = create_list('ant@example.com')
>>> transaction.commit()

Reading a configuration

All readable attributes for a list are available on a sub-resource.

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/config')
acceptable_aliases: []
admin_immed_notify: True
admin_notify_mchanges: False
administrivia: True
advertised: True
allow_list_posts: True
anonymous_list: False
archive_policy: public
autorespond_owner: none
autorespond_postings: none
autorespond_requests: none
autoresponse_grace_period: 90d
autoresponse_owner_text:
autoresponse_postings_text:
autoresponse_request_text:
bounces_address: ant-bounces@example.com
collapse_alternatives: True
convert_html_to_plaintext: False
created_at: 20...T...
default_member_action: defer
default_nonmember_action: hold
description:
digest_last_sent_at: None
digest_size_threshold: 30.0
display_name: Ant
filter_content: False
first_strip_reply_to: False
fqdn_listname: ant@example.com
http_etag: "..."
include_rfc2369_headers: True
join_address: ant-join@example.com
last_post_at: None
leave_address: ant-leave@example.com
list_name: ant
mail_host: example.com
next_digest_number: 1
no_reply_address: noreply@example.com
owner_address: ant-owner@example.com
post_id: 1
posting_address: ant@example.com
posting_pipeline: default-posting-pipeline
reply_goes_to_list: no_munging
reply_to_address:
request_address: ant-request@example.com
scheme: http
send_welcome_message: True
subject_prefix: [Ant]
subscription_policy: confirm
volume: 1
web_host: lists.example.com
welcome_message_uri: mailman:///welcome.txt

Changing the full configuration

Not all of the readable attributes can be set through the web interface. The
ones that can, can either be set via PUT or PATCH. PUT changes
all the writable attributes in one request.

When using PUT, all writable attributes must be included.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config',
... dict(
... acceptable_aliases=['one@example.com', 'two@example.com'],
... admin_immed_notify=False,
... admin_notify_mchanges=True,
... administrivia=False,
... advertised=False,
... anonymous_list=True,
... archive_policy='never',
... autorespond_owner='respond_and_discard',
... autorespond_postings='respond_and_continue',
... autorespond_requests='respond_and_discard',
... autoresponse_grace_period='45d',
... autoresponse_owner_text='the owner',
... autoresponse_postings_text='the mailing list',
... autoresponse_request_text='the robot',
... display_name='Fnords',
... description='This is my mailing list',
... include_rfc2369_headers=False,
... allow_list_posts=False,
... digest_size_threshold=10.5,
... posting_pipeline='virgin',
... filter_content=True,
... first_strip_reply_to=True,
... convert_html_to_plaintext=True,
... collapse_alternatives=False,
... reply_goes_to_list='point_to_list',
... reply_to_address='bee@example.com',
... send_welcome_message=False,
... subject_prefix='[ant]',
... subscription_policy='moderate',
... welcome_message_uri='mailman:///welcome.txt',
... default_member_action='hold',
... default_nonmember_action='discard',
...),
... 'PUT')
content-length: 0
date: ...
server: WSGIServer/...
status: 204

These values are changed permanently.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config')
acceptable_aliases: ['one@example.com', 'two@example.com']
admin_immed_notify: False
admin_notify_mchanges: True
administrivia: False
advertised: False
allow_list_posts: False
anonymous_list: True
archive_policy: never
autorespond_owner: respond_and_discard
autorespond_postings: respond_and_continue
autorespond_requests: respond_and_discard
autoresponse_grace_period: 45d
autoresponse_owner_text: the owner
autoresponse_postings_text: the mailing list
autoresponse_request_text: the robot
...
collapse_alternatives: False
convert_html_to_plaintext: True
...
default_member_action: hold
default_nonmember_action: discard
description: This is my mailing list
...
digest_size_threshold: 10.5
display_name: Fnords
filter_content: True
first_strip_reply_to: True
...
include_rfc2369_headers: False
...
posting_pipeline: virgin
reply_goes_to_list: point_to_list
reply_to_address: bee@example.com
...
send_welcome_message: False
subject_prefix: [ant]
subscription_policy: moderate
...
welcome_message_uri: mailman:///welcome.txt

Changing a partial configuration

Using PATCH, you can change just one attribute.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config',
... dict(display_name='My List'),
... 'PATCH')
content-length: 0
date: ...
server: ...
status: 204

These values are changed permanently.

>>> print(mlist.display_name)
My List

Sub-resources

Mailing list configuration variables are actually available as sub-resources
on the mailing list. Their values can be retrieved and set through the
sub-resource.

Simple resources

You can view the current value of the sub-resource.

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name')
display_name: My List
http_etag: ...

The resource can be changed by PUTting to it. Note that the value still
requires a dictionary, and that dictionary must have a single key matching the
name of the resource.

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name',
... dict(display_name='Your List'),
... 'PUT')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name')
display_name: Your List
http_etag: ...

PATCH works the same way, with the same effect, so you can choose to use
either method.

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name',
... dict(display_name='Their List'),
... 'PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name')
display_name: Their List
http_etag: ...

Acceptable aliases

These are recipient aliases that can be used in the To: and CC:
headers instead of the posting address. They are often used in forwarded
emails. By default, a mailing list has no acceptable aliases.

>>> from mailman.interfaces.mailinglist import IAcceptableAliasSet
>>> IAcceptableAliasSet(mlist).clear()
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config/acceptable_aliases')
acceptable_aliases: []
http_etag: "..."

We can add a few by PUT-ing them on the sub-resource. The keys in the
dictionary are ignored.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config/acceptable_aliases',
... dict(acceptable_aliases=['foo@example.com',
... 'bar@example.net']),
... 'PUT')
content-length: 0
date: ...
server: WSGIServer/...
status: 204

Aliases are returned as a list on the aliases key.

>>> response = call_http(
... 'http://localhost:9001/3.0/lists/'
... 'ant@example.com/config/acceptable_aliases')
>>> for alias in response['acceptable_aliases']:
... print(alias)
bar@example.net
foo@example.com

The mailing list has its aliases set.

>>> from mailman.interfaces.mailinglist import IAcceptableAliasSet
>>> aliases = IAcceptableAliasSet(mlist)
>>> for alias in sorted(aliases.aliases):
... print(alias)
bar@example.net
foo@example.com

Mailing lists

The REST API can be queried for the set of known mailing lists. There is a
top level collection that can return all the mailing lists. There aren’t any
yet though.

>>> dump_json('http://localhost:9001/3.0/lists')
http_etag: "..."
start: 0
total_size: 0

Create a mailing list in a domain and it’s accessible via the API.

>>> mlist = create_list('ant@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/lists')
entry 0:
 display_name: Ant
 fqdn_listname: ant@example.com
 http_etag: "..."
 list_id: ant.example.com
 list_name: ant
 mail_host: example.com
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/ant.example.com
 volume: 1
http_etag: "..."
start: 0
total_size: 1

You can also query for lists from a particular domain.

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists')
entry 0:
 display_name: Ant
 fqdn_listname: ant@example.com
 http_etag: "..."
 list_id: ant.example.com
 list_name: ant
 mail_host: example.com
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/ant.example.com
 volume: 1
http_etag: "..."
start: 0
total_size: 1

Paginating over list records

Instead of returning all the list records at once, it’s possible to return
them in pages by adding the GET parameters count and page to the
request URI. Page 1 is the first page and count defines the size of the
page.

>>> mlist = create_list('bird@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists'
... '?count=1&page=1')
entry 0:
 display_name: Ant
 fqdn_listname: ant@example.com
 http_etag: "..."
 list_id: ant.example.com
 list_name: ant
 mail_host: example.com
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/ant.example.com
 volume: 1
http_etag: "..."
start: 0
total_size: 2

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists'
... '?count=1&page=2')
entry 0:
 display_name: Bird
 fqdn_listname: bird@example.com
 http_etag: "..."
 list_id: bird.example.com
 list_name: bird
 mail_host: example.com
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/bird.example.com
 volume: 1
http_etag: "..."
start: 1
total_size: 2

Creating lists via the API

New mailing lists can also be created through the API, by posting to the
lists URL.

>>> dump_json('http://localhost:9001/3.0/lists', {
... 'fqdn_listname': 'bee@example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/lists/bee.example.com
...

The mailing list exists in the database.

>>> from mailman.interfaces.listmanager import IListManager
>>> from zope.component import getUtility
>>> list_manager = getUtility(IListManager)

>>> bee = list_manager.get('bee@example.com')
>>> bee
<mailing list "bee@example.com" at ...>

The mailing list was created using the default style, which allows list posts.

>>> bee.allow_list_posts
True

It is also available in the REST API via the location given in the response.

>>> dump_json('http://localhost:9001/3.0/lists/bee.example.com')
display_name: Bee
fqdn_listname: bee@example.com
http_etag: "..."
list_id: bee.example.com
list_name: bee
mail_host: example.com
member_count: 0
self_link: http://localhost:9001/3.0/lists/bee.example.com
volume: 1

Normally, you access the list via its RFC 2369 list-id as shown above, but for
backward compatibility purposes, you can also access it via the list’s posting
address, if that has never been changed (since the list-id is immutable, but
the posting address is not).

>>> dump_json('http://localhost:9001/3.0/lists/bee@example.com')
display_name: Bee
fqdn_listname: bee@example.com
http_etag: "..."
list_id: bee.example.com
list_name: bee
mail_host: example.com
member_count: 0
self_link: http://localhost:9001/3.0/lists/bee.example.com
volume: 1

Apply a style at list creation time

List styles allow you to more easily create mailing lists
of a particular type, e.g. discussion lists. We can see which styles are
available, and which is the default style.

>>> dump_json('http://localhost:9001/3.0/lists/styles')
default: legacy-default
http_etag: "..."
style_names: ['legacy-announce', 'legacy-default']

When creating a list, if we don’t specify a style to apply, the default style
is used. However, we can provide a style name in the POST data to choose a
different style.

>>> dump_json('http://localhost:9001/3.0/lists', {
... 'fqdn_listname': 'cat@example.com',
... 'style_name': 'legacy-announce',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/lists/cat.example.com
...

We can tell that the list was created using the legacy-announce style,
because announce lists don’t allow posting by the general public.

>>> cat = list_manager.get('cat@example.com')
>>> cat.allow_list_posts
False

Deleting lists via the API

Existing mailing lists can be deleted through the API, by doing an HTTP
DELETE on the mailing list URL.

>>> dump_json('http://localhost:9001/3.0/lists/bee.example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

The mailing list does not exist.

>>> print(list_manager.get('bee@example.com'))
None

For backward compatibility purposes, you can delete a list via its posting
address as well.

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

The mailing list does not exist.

>>> print(list_manager.get('ant@example.com'))
None

Managing mailing list archivers

The Mailman system has some site-wide enabled archivers, and each mailing list
can enable or disable these archivers individually. This gives list owners
control over where traffic to their list is archived. You can see which
archivers are available, and whether they are enabled for this mailing list.

>>> mlist = create_list('dog@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/lists/dog@example.com/archivers')
http_etag: "..."
mail-archive: True
mhonarc: True
prototype: True

You can set all the archiver states by putting new state flags on the
resource.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/dog@example.com/archivers', {
... 'mail-archive': False,
... 'mhonarc': True,
... 'prototype': False,
... }, method='PUT')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/lists/dog@example.com/archivers')
http_etag: "..."
mail-archive: False
mhonarc: True
prototype: False

You can change the state of a subset of the list archivers.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/dog@example.com/archivers', {
... 'mhonarc': False,
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/lists/dog@example.com/archivers')
http_etag: "..."
mail-archive: False
mhonarc: False
prototype: False

Membership

The REST API can be used to subscribe and unsubscribe users to mailing lists.
A subscribed user is called a member. There is a top level collection that
returns all the members of all known mailing lists.

There are no mailing lists and no members yet.

>>> dump_json('http://localhost:9001/3.0/members')
http_etag: "..."
start: 0
total_size: 0

We create a mailing list, which starts out with no members.

>>> bee = create_list('bee@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/members')
http_etag: "..."
start: 0
total_size: 0

Subscribers

After Bart subscribes to the mailing list, his subscription is available via
the REST interface.

>>> from mailman.interfaces.member import MemberRole
>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> from mailman.testing.helpers import subscribe
>>> subscribe(bee, 'Bart')
<Member: Bart Person <bperson@example.com> on bee@example.com
 as MemberRole.member>

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
http_etag: "..."
start: 0
total_size: 1

Bart’s specific membership can be accessed directly:

>>> dump_json('http://localhost:9001/3.0/members/1')
address: http://localhost:9001/3.0/addresses/bperson@example.com
delivery_mode: regular
email: bperson@example.com
http_etag: ...
list_id: bee.example.com
member_id: 1
role: member
self_link: http://localhost:9001/3.0/members/1
user: http://localhost:9001/3.0/users/1

When Cris also joins the mailing list, her subscription is also available via
the REST interface.

>>> subscribe(bee, 'Cris')
<Member: Cris Person <cperson@example.com> on bee@example.com
 as MemberRole.member>

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 2

The subscribed members are returned in alphabetical order, so when Anna
subscribes, she is returned first.

>>> subscribe(bee, 'Anna')
<Member: Anna Person <aperson@example.com> on bee@example.com
 as MemberRole.member>

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 2:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 3

Subscriptions are also returned alphabetically by mailing list posting
address. Anna and Cris subscribe to this new mailing list.

>>> ant = create_list('ant@example.com')
>>> subscribe(ant, 'Anna')
<Member: Anna Person <aperson@example.com> on ant@example.com
 as MemberRole.member>
>>> subscribe(ant, 'Cris')
<Member: Cris Person <cperson@example.com> on ant@example.com
 as MemberRole.member>

User ids are different than member ids.

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 5
 role: member
 self_link: http://localhost:9001/3.0/members/5
 user: http://localhost:9001/3.0/users/2
entry 2:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
entry 3:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 4:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 5

We can also get just the members of a single mailing list.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/ant@example.com/roster/member')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 5
 role: member
 self_link: http://localhost:9001/3.0/members/5
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 2

Paginating over member records

Instead of returning all the member records at once, it’s possible to return
them in pages by adding the GET parameters count and page to the
request URI. Page 1 is the first page and count defines the size of the
page.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/ant@example.com/roster/member'
... '?count=1&page=1')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
http_etag: ...
start: 0
total_size: 2

This works with members of a single list as well as with all members.

>>> dump_json(
... 'http://localhost:9001/3.0/members?count=1&page=1')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
http_etag: ...
start: 0
total_size: 5

Owners and moderators

Mailing list owners and moderators also show up in the REST API. Cris becomes
an owner of the ant mailing list and Dave becomes a moderator of the bee
mailing list.

>>> dump_json('http://localhost:9001/3.0/members', {
... 'list_id': 'ant.example.com',
... 'subscriber': 'dperson@example.com',
... 'role': 'moderator',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/members/6
server: ...
status: 201

>>> dump_json('http://localhost:9001/3.0/members', {
... 'list_id': 'bee.example.com',
... 'subscriber': 'cperson@example.com',
... 'role': 'owner',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/members/7
server: ...
status: 201

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/dperson@example.com
 delivery_mode: regular
 email: dperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 6
 role: moderator
 self_link: http://localhost:9001/3.0/members/6
 user: http://localhost:9001/3.0/users/4
entry 1:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
entry 2:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 5
 role: member
 self_link: http://localhost:9001/3.0/members/5
 user: http://localhost:9001/3.0/users/2
entry 3:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 7
 role: owner
 self_link: http://localhost:9001/3.0/members/7
 user: http://localhost:9001/3.0/users/2
entry 4:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
entry 5:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 6:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 7

We can access all the owners of a list.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/bee@example.com/roster/owner')
entry 0:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 7
 role: owner
 self_link: http://localhost:9001/3.0/members/7
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 1

Finding members

A specific member can always be referenced by their role and address.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'bee@example.com/owner/cperson@example.com')
address: http://localhost:9001/3.0/addresses/cperson@example.com
delivery_mode: regular
email: cperson@example.com
http_etag: ...
list_id: bee.example.com
member_id: 7
role: owner
self_link: http://localhost:9001/3.0/members/7
user: http://localhost:9001/3.0/users/2

You can find a specific member based on several different criteria. For
example, we can search for all the memberships of a particular address.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'subscriber': 'aperson@example.com',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
http_etag: ...
start: 0
total_size: 2

Or, we can find all the memberships for a particular mailing list.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'list_id': 'bee.example.com',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 2:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
entry 3:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 7
 role: owner
 self_link: http://localhost:9001/3.0/members/7
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 4

Or, we can find all the memberships for an address on a particular mailing
list.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'subscriber': 'cperson@example.com',
... 'list_id': 'bee.example.com',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 7
 role: owner
 self_link: http://localhost:9001/3.0/members/7
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 2

Or, we can find all the memberships for an address with a specific role.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'subscriber': 'cperson@example.com',
... 'role': 'member',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 5
 role: member
 self_link: http://localhost:9001/3.0/members/5
 user: http://localhost:9001/3.0/users/2
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 2

Finally, we can search for a specific member given all three criteria.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'subscriber': 'cperson@example.com',
... 'list_id': 'bee.example.com',
... 'role': 'member',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 1

Joining a mailing list

A user can be subscribed to a mailing list via the REST API, either by a
specific address, or more generally by their preferred address. A subscribed
user is called a member.

The list owner wants to subscribe Elly to the ant mailing list. Since
Elly’s email address is not yet known to Mailman, a user is created for her.
By default, get gets a regular delivery.

>>> dump_json('http://localhost:9001/3.0/members', {
... 'list_id': 'ant.example.com',
... 'subscriber': 'eperson@example.com',
... 'display_name': 'Elly Person',
... 'pre_verified': True,
... 'pre_confirmed': True,
... 'pre_approved': True,
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/members/8
server: ...
status: 201

Elly is now a known user, and a member of the mailing list.

>>> elly = user_manager.get_user('eperson@example.com')
>>> elly
<User "Elly Person" (...) at ...>

>>> set(member.list_id for member in elly.memberships.members)
{'ant.example.com'}

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
...
entry 3:
 address: http://localhost:9001/3.0/addresses/eperson@example.com
 delivery_mode: regular
 email: eperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 8
 role: member
 self_link: http://localhost:9001/3.0/members/8
 user: http://localhost:9001/3.0/users/5
...

Gwen is a user with a preferred address. She subscribes to the ant mailing
list with her preferred address.

>>> from mailman.utilities.datetime import now
>>> gwen = user_manager.create_user('gwen@example.com', 'Gwen Person')
>>> preferred = list(gwen.addresses)[0]
>>> preferred.verified_on = now()
>>> gwen.preferred_address = preferred

Note that we must extract the user id before we commit the transaction.
This is because accessing the .user_id attribute will lock the database
in the testing process, breaking the REST queue process. Also, the
user_id is a UUID internally, but an integer (represented as a string)
is required by the REST API.
>>> user_id = gwen.user_id.int
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/members', {
... 'list_id': 'ant.example.com',
... 'subscriber': user_id,
... 'pre_verified': True,
... 'pre_confirmed': True,
... 'pre_approved': True,
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/members/9
server: ...
status: 201

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
...
entry 4:
 address: http://localhost:9001/3.0/addresses/gwen@example.com
 delivery_mode: regular
 email: gwen@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 9
 role: member
 self_link: http://localhost:9001/3.0/members/9
 user: http://localhost:9001/3.0/users/6
...
total_size: 9

When Gwen changes her preferred address, her subscription automatically tracks
the new address.

>>> new_preferred = gwen.register('gwen.person@example.com')
>>> new_preferred.verified_on = now()
>>> gwen.preferred_address = new_preferred
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
...
entry 4:
 address: http://localhost:9001/3.0/addresses/gwen.person@example.com
 delivery_mode: regular
 email: gwen.person@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 9
 role: member
 self_link: http://localhost:9001/3.0/members/9
 user: http://localhost:9001/3.0/users/6
...
total_size: 9

Leaving a mailing list

Elly decides she does not want to be a member of the mailing list after all,
so she leaves from the mailing list.

Ensure our previous reads don't keep the database lock.
>>> transaction.abort()
>>> dump_json('http://localhost:9001/3.0/members/8',
... method='DELETE')
content-length: 0
...
status: 204

Elly is no longer a member of the mailing list.

>>> set(member.mailing_list for member in elly.memberships.members)
set()

Changing delivery address

As shown above, Gwen is subscribed to a mailing list with her preferred email
address. If she changes her preferred address, this automatically changes the
address she will receive deliveries at for all such memberships.

However, when Herb subscribes to a couple of mailing lists with explicit
addresses, he must change each subscription explicitly.

Herb controls multiple email addresses. All of these addresses are verified.

>>> herb = user_manager.create_user('herb@example.com', 'Herb Person')
>>> herb_1 = list(herb.addresses)[0]
>>> herb_2 = herb.register('hperson@example.com')
>>> herb_3 = herb.register('herb.person@example.com')
>>> for address in herb.addresses:
... address.verified_on = now()

Herb subscribes to both the ant and bee mailing lists with one of his
addresses.

>>> ant.subscribe(herb_1)
<Member: Herb Person <herb@example.com> on
 ant@example.com as MemberRole.member>
>>> bee.subscribe(herb_1)
<Member: Herb Person <herb@example.com> on
 bee@example.com as MemberRole.member>
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
...
entry 4:
 address: http://localhost:9001/3.0/addresses/herb@example.com
 delivery_mode: regular
 email: herb@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 10
 role: member
 self_link: http://localhost:9001/3.0/members/10
 user: http://localhost:9001/3.0/users/7
...
entry 9:
 address: http://localhost:9001/3.0/addresses/herb@example.com
 delivery_mode: regular
 email: herb@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 11
 role: member
 self_link: http://localhost:9001/3.0/members/11
 user: http://localhost:9001/3.0/users/7
http_etag: "..."
start: 0
total_size: 10

In order to change all of his subscriptions to use a different email address,
Herb must iterate through his memberships explicitly.

>>> from mailman.testing.helpers import call_api
>>> content, response = call_api('http://localhost:9001/3.0/addresses/'
... 'herb@example.com/memberships')
>>> memberships = [entry['self_link'] for entry in content['entries']]
>>> for url in sorted(memberships):
... print(url)
http://localhost:9001/3.0/members/10
http://localhost:9001/3.0/members/11

For each membership resource, the subscription address is changed by PATCH’ing
the address attribute.

>>> dump_json('http://localhost:9001/3.0/members/10', {
... 'address': 'hperson@example.com',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/members/11', {
... 'address': 'hperson@example.com',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

Herb’s memberships with the old address are gone.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'herb@example.com/memberships')
http_etag: "..."
start: 0
total_size: 0

Herb’s memberships have been updated with his new email address. Of course,
his membership ids have not changed.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'hperson@example.com/memberships')
entry 0:
 address: http://localhost:9001/3.0/addresses/hperson@example.com
 delivery_mode: regular
 email: hperson@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 10
 role: member
 self_link: http://localhost:9001/3.0/members/10
 user: http://localhost:9001/3.0/users/7
entry 1:
 address: http://localhost:9001/3.0/addresses/hperson@example.com
 delivery_mode: regular
 email: hperson@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 11
 role: member
 self_link: http://localhost:9001/3.0/members/11
 user: http://localhost:9001/3.0/users/7
http_etag: "..."
start: 0
total_size: 2

Post Moderation

Messages which are held for approval can be accepted, rejected, discarded, or
deferred by the list moderators.

Viewing the list of held messages

Held messages can be moderated through the REST API. A mailing list starts
with no held messages.

>>> ant = create_list('ant@example.com')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/held')
http_etag: "..."
start: 0
total_size: 0

When a message gets held for moderator approval, it shows up in this list.

>>> msg = message_from_string("""\
... From: anne@example.com
... To: ant@example.com
... Subject: Something
... Message-ID: <alpha>
...
... Something else.
... """)

>>> from mailman.app.moderator import hold_message
>>> request_id = hold_message(ant, msg, {'extra': 7}, 'Because')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/held')
entry 0:
 extra: 7
 hold_date: 2005-08-01T07:49:23
 http_etag: "..."
 message_id: <alpha>
 msg: From: anne@example.com
To: ant@example.com
Subject: Something
Message-ID: <alpha>
X-Message-ID-Hash: GCSMSG43GYWWVUMO6F7FBUSSPNXQCJ6M

Something else.

 reason: Because
 request_id: 1
 sender: anne@example.com
 subject: Something
http_etag: "..."
start: 0
total_size: 1

You can get an individual held message by providing the request id for that
message. This will include the text of the message.

>>> def url(request_id):
... return ('http://localhost:9001/3.0/lists/'
... 'ant@example.com/held/{0}'.format(request_id))

>>> dump_json(url(request_id))
extra: 7
hold_date: 2005-08-01T07:49:23
http_etag: "..."
message_id: <alpha>
msg: From: anne@example.com
To: ant@example.com
Subject: Something
Message-ID: <alpha>
X-Message-ID-Hash: GCSMSG43GYWWVUMO6F7FBUSSPNXQCJ6M

Something else.

reason: Because
request_id: 1
sender: anne@example.com
subject: Something

Disposing of held messages

Individual messages can be moderated through the API by POSTing back to the
held message’s resource. The POST data requires an action of one of the
following:

	discard - throw the message away.

	reject - bounces the message back to the original author.

	defer - defer any action on the message (continue to hold it)

	accept - accept the message for posting.

Let’s see what happens when the above message is deferred.

>>> dump_json(url(request_id), {
... 'action': 'defer',
... })
content-length: 0
date: ...
server: ...
status: 204

The message is still in the moderation queue.

>>> dump_json(url(request_id))
extra: 7
hold_date: 2005-08-01T07:49:23
http_etag: "..."
message_id: <alpha>
msg: From: anne@example.com
To: ant@example.com
Subject: Something
Message-ID: <alpha>
X-Message-ID-Hash: GCSMSG43GYWWVUMO6F7FBUSSPNXQCJ6M
<BLANKLINE>
Something else.
<BLANKLINE>
reason: Because
request_id: 1
sender: anne@example.com
subject: Something

The held message can be discarded.

>>> dump_json(url(request_id), {
... 'action': 'discard',
... })
content-length: 0
date: ...
server: ...
status: 204

Messages can also be accepted via the REST API. Let’s hold a new message for
moderation.

>>> del msg['message-id']
>>> msg['Message-ID'] = '<bravo>'
>>> request_id = hold_message(ant, msg)
>>> transaction.commit()

>>> results = call_http(url(request_id))
>>> print(results['message_id'])
<bravo>

>>> dump_json(url(request_id), {
... 'action': 'accept',
... })
content-length: 0
date: ...
server: ...
status: 204

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('pipeline')
>>> len(messages)
1
>>> print(messages[0].msg['message-id'])
<bravo>

Messages can be rejected via the REST API too. These bounce the message back
to the original author.

>>> del msg['message-id']
>>> msg['Message-ID'] = '<charlie>'
>>> request_id = hold_message(ant, msg)
>>> transaction.commit()

>>> results = call_http(url(request_id))
>>> print(results['message_id'])
<charlie>

>>> dump_json(url(request_id), {
... 'action': 'reject',
... })
content-length: 0
date: ...
server: ...
status: 204

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg['subject'])
Request to mailing list "Ant" rejected

Preferences

Addresses have preferences.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> anne = user_manager.create_address('anne@example.com')
>>> transaction.commit()

Although to start with, an address has no preferences.

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences')
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/anne@example.com/preferences

Once the address is given some preferences, they are available through the
REST API.

>>> anne.preferences.acknowledge_posts = True
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences')
acknowledge_posts: True
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/anne@example.com/preferences

Similarly, users have their own set of preferences, which also start out empty.

>>> bart = user_manager.create_user('bart@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences')
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/bart@example.com/preferences

Setting a preference on the user’s address does not set them on the user.

>>> list(bart.addresses)[0].preferences.acknowledge_posts = True
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences')
acknowledge_posts: True
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/bart@example.com/preferences

>>> dump_json('http://localhost:9001/3.0/users/1/preferences')
http_etag: "..."
self_link: http://localhost:9001/3.0/users/1/preferences

Users have their own set of preferences.

>>> bart.preferences.receive_own_postings = False
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/users/1/preferences')
http_etag: "..."
receive_own_postings: False
self_link: http://localhost:9001/3.0/users/1/preferences

Similarly, members have their own separate set of preferences, and just like
the above, setting a preference on the member’s address or user does not set
the preference on the member.

>>> from mailman.interfaces.member import MemberRole
>>> mlist = create_list('test@example.com')
>>> bart_member = mlist.subscribe(list(bart.addresses)[0])
>>> bart_member.preferences.receive_list_copy = False
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/members/1/preferences')
http_etag: "..."
receive_list_copy: False
self_link: http://localhost:9001/3.0/members/1/preferences

Changing preferences

Preferences for the address, user, or member can be changed through the API.
You can change all the preferences for a particular object by using an HTTP
PUT operation.

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences', {
... 'acknowledge_posts': True,
... 'delivery_mode': 'plaintext_digests',
... 'delivery_status': 'by_user',
... 'hide_address': False,
... 'preferred_language': 'ja',
... 'receive_list_copy': True,
... 'receive_own_postings': False,
... }, method='PUT')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences')
acknowledge_posts: True
delivery_mode: plaintext_digests
delivery_status: by_user
hide_address: False
http_etag: "..."
preferred_language: ja
receive_list_copy: True
receive_own_postings: False
self_link: http://localhost:9001/3.0/addresses/bart@example.com/preferences

You can also update just a few of the attributes using PATCH.

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences', {
... 'delivery_mode': 'plaintext_digests',
... 'receive_list_copy': False,
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences')
acknowledge_posts: True
delivery_mode: plaintext_digests
delivery_status: by_user
hide_address: False
http_etag: "..."
preferred_language: ja
receive_list_copy: False
receive_own_postings: False
self_link: http://localhost:9001/3.0/addresses/bart@example.com/preferences

Deleting preferences

Preferences for any of the levels, member, user, or address, can be entirely
deleted.

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences', {
... 'preferred_language': 'ja',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences')
acknowledge_posts: True
http_etag: "..."
preferred_language: ja
self_link: http://localhost:9001/3.0/addresses/anne@example.com/preferences

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences', method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences')
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/anne@example.com/preferences

Combined member preferences

The member resource provides a way to access the set of preference in effect
for a specific subscription. This stacks the preferences, so that a value is
always available. The preference value is looked up first on the member,
falling back to the address, then user, then system preference.

Preferences accessed through this interface are always read only.

>>> dump_json('http://localhost:9001/3.0/members/1/all/preferences')
acknowledge_posts: True
delivery_mode: plaintext_digests
delivery_status: by_user
http_etag: "..."
preferred_language: ja
receive_list_copy: False
receive_own_postings: False
self_link: http://localhost:9001/3.0/members/1/all/preferences

System preferences

The Mailman system itself has a default set of preference. All preference
look ups fall back to these values, which are read-only.

>>> dump_json('http://localhost:9001/3.0/system/preferences')
acknowledge_posts: False
delivery_mode: regular
delivery_status: enabled
hide_address: True
http_etag: "..."
preferred_language: en
receive_list_copy: True
receive_own_postings: True
self_link: http://localhost:9001/3.0/system/preferences

Queues

You can get information about what messages are currently in the Mailman
queues by querying the top-level queues resource. Of course, this
information may be out-of-date by the time you receive a response, since queue
management is asynchronous, but the information will be as current as
possible.

You can get the list of all queue names.

>>> dump_json('http://localhost:9001/3.0/queues')
entry 0:
 count: 0
 directory: .../queue/archive
 files: []
 http_etag: ...
 name: archive
 self_link: http://localhost:9001/3.0/queues/archive
entry 1:
 count: 0
 directory: .../queue/bad
 files: []
 http_etag: ...
 name: bad
 self_link: http://localhost:9001/3.0/queues/bad
entry 2:
 count: 0
 directory: .../queue/bounces
 files: []
 http_etag: ...
 name: bounces
 self_link: http://localhost:9001/3.0/queues/bounces
entry 3:
 count: 0
 directory: .../queue/command
 files: []
 http_etag: ...
 name: command
 self_link: http://localhost:9001/3.0/queues/command
entry 4:
 count: 0
 directory: .../queue/digest
 files: []
 http_etag: ...
 name: digest
 self_link: http://localhost:9001/3.0/queues/digest
entry 5:
 count: 0
 directory: .../queue/in
 files: []
 http_etag: ...
 name: in
 self_link: http://localhost:9001/3.0/queues/in
entry 6:
 count: 0
 directory: .../queue/nntp
 files: []
 http_etag: ...
 name: nntp
 self_link: http://localhost:9001/3.0/queues/nntp
entry 7:
 count: 0
 directory: .../queue/out
 files: []
 http_etag: ...
 name: out
 self_link: http://localhost:9001/3.0/queues/out
entry 8:
 count: 0
 directory: .../queue/pipeline
 files: []
 http_etag: ...
 name: pipeline
 self_link: http://localhost:9001/3.0/queues/pipeline
entry 9:
 count: 0
 directory: .../queue/retry
 files: []
 http_etag: ...
 name: retry
 self_link: http://localhost:9001/3.0/queues/retry
entry 10:
 count: 0
 directory: .../queue/shunt
 files: []
 http_etag: ...
 name: shunt
 self_link: http://localhost:9001/3.0/queues/shunt
entry 11:
 count: 0
 directory: .../queue/virgin
 files: []
 http_etag: ...
 name: virgin
 self_link: http://localhost:9001/3.0/queues/virgin
http_etag: ...
self_link: http://localhost:9001/3.0/queues
start: 0
total_size: 12

Query an individual queue to get a count of, and the list of file base names
in the queue. There are currently no files in the bad queue.

>>> dump_json('http://localhost:9001/3.0/queues/bad')
count: 0
directory: .../queue/bad
files: []
http_etag: ...
name: bad
self_link: http://localhost:9001/3.0/queues/bad

We can inject a message into the bad queue. It must be destined for an
existing mailing list.

>>> dump_json('http://localhost:9001/3.0/lists', {
... 'fqdn_listname': 'ant@example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/lists/ant.example.com
server: WSGIServer/0.2 CPython/...
status: 201

While list creation takes an FQDN list name, injecting a message to the queue
requires a List ID.

>>> dump_json('http://localhost:9001/3.0/queues/bad', {
... 'list_id': 'ant.example.com',
... 'text': """\
... From: anne@example.com
... To: ant@example.com
... Subject: Testing
...
... """})
content-length: 0
date: ...
location: http://localhost:9001/3.0/queues/bad/...
server: ...
status: 201

And now the bad queue has at least one message in it.

>>> dump_json('http://localhost:9001/3.0/queues/bad')
count: 1
directory: .../queue/bad
files: ['...']
http_etag: ...
name: bad
self_link: http://localhost:9001/3.0/queues/bad

We can delete the injected message.

>>> json = call_http('http://localhost:9001/3.0/queues/bad')
>>> len(json['files'])
1
>>> dump_json('http://localhost:9001/3.0/queues/bad/{}'.format(
... json['files'][0]),
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

And now the queue has no files.

>>> dump_json('http://localhost:9001/3.0/queues/bad')
count: 0
directory: .../queue/bad
files: []
http_etag: ...
name: bad
self_link: http://localhost:9001/3.0/queues/bad

Subscription moderation

Subscription (and sometimes unsubscription) requests can similarly be
accepted, discarded, rejected, or deferred by the list moderators.

Viewing subscription requests

A mailing list starts with no pending subscription or unsubscription requests.

>>> ant = create_list('ant@example.com')
>>> ant.admin_immed_notify = False
>>> from mailman.interfaces.mailinglist import SubscriptionPolicy
>>> ant.subscription_policy = SubscriptionPolicy.moderate
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/requests')
http_etag: "..."
start: 0
total_size: 0

When Anne tries to subscribe to the Ant list, her subscription is held for
moderator approval.

>>> from mailman.interfaces.registrar import IRegistrar
>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> registrar = IRegistrar(ant)
>>> manager = getUtility(IUserManager)
>>> anne = manager.create_address('anne@example.com', 'Anne Person')
>>> token, token_owner, member = registrar.register(
... anne, pre_verified=True, pre_confirmed=True)
>>> print(member)
None

The message is being held for moderator approval.

>>> print(token_owner.name)
moderator

The subscription request can be viewed in the REST API.

>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/requests')
entry 0:
 display_name: Anne Person
 email: anne@example.com
 http_etag: "..."
 list_id: ant.example.com
 token: ...
 token_owner: moderator
 when: 2005-08-01T07:49:23
http_etag: "..."
start: 0
total_size: 1

Viewing individual requests

You can view an individual membership change request by providing the token
(a.k.a. request id). Anne’s subscription request looks like this.

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/'
... 'requests/{}'.format(token))
display_name: Anne Person
email: anne@example.com
http_etag: "..."
list_id: ant.example.com
token: ...
token_owner: moderator
when: 2005-08-01T07:49:23

Disposing of subscription requests

Moderators can dispose of held subscription requests by POSTing back to the
request’s resource. The POST data requires an action of one of the following:

	discard - throw the request away.

	
	reject - the request is denied and a notification is sent to the email

	address requesting the membership change.

	defer - defer any action on this membership change (continue to hold it).

	accept - accept the membership change.

Anne’s subscription request is accepted.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/requests/{}'.format(token),
... {'action': 'accept'})
content-length: 0
date: ...
server: ...
status: 204

Anne is now a member of the mailing list.

>>> ant.members.get_member('anne@example.com')
<Member: Anne Person <anne@example.com> on ant@example.com
 as MemberRole.member>

There are no more membership change requests.

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/requests')
http_etag: "..."
start: 0
total_size: 0

System configuration

The entire system configuration is available through the REST API. You can
get a list of all defined sections.

>>> dump_json('http://localhost:9001/3.0/system/configuration')
http_etag: ...
sections: ['antispam', 'archiver.mail_archive', 'archiver.master', ...

You can also get all the values for a particular section.

>>> dump_json('http://localhost:9001/3.0/system/configuration/mailman')
default_language: en
email_commands_max_lines: 10
filtered_messages_are_preservable: no
html_to_plain_text_command: /usr/bin/lynx -dump $filename
http_etag: ...
layout: testing
noreply_address: noreply
pending_request_life: 3d
post_hook:
pre_hook:
sender_headers: from from_ reply-to sender
site_owner: noreply@example.com

Dotted section names work too, for example, to get the French language
settings section.

>>> dump_json('http://localhost:9001/3.0/system/configuration/language.fr')
charset: iso-8859-1
description: French
enabled: yes
http_etag: ...

Users

The REST API can be used to add and remove users, add and remove user
addresses, and change their preferred address, password, or name. The API can
also be used to verify a user’s password.

Users are different than members; the latter represents an email address
subscribed to a specific mailing list. Users are just people that Mailman
knows about.

There are no users yet.

>>> dump_json('http://localhost:9001/3.0/users')
http_etag: "..."
start: 0
total_size: 0

Anne is added, with an email address. Her user record gets a user_id.

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)
>>> anne = user_manager.create_user('anne@example.com', 'Anne Person')
>>> transaction.commit()
>>> int(anne.user_id.int)
1

Anne’s user record is returned as an entry into the collection of all users.

>>> dump_json('http://localhost:9001/3.0/users')
entry 0:
 created_on: 2005-08-01T07:49:23
 display_name: Anne Person
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
http_etag: "..."
start: 0
total_size: 1

A user might not have a display name, in which case, the attribute will not be
returned in the REST API.

>>> bart = user_manager.create_user('bart@example.com')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/users')
entry 0:
 created_on: 2005-08-01T07:49:23
 display_name: Anne Person
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
entry 1:
 created_on: 2005-08-01T07:49:23
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/2
 user_id: 2
http_etag: "..."
start: 0
total_size: 2

Paginating over user records

Instead of returning all the user records at once, it’s possible to return
them in pages by adding the GET parameters count and page to the
request URI. Page 1 is the first page and count defines the size of the
page.

>>> dump_json('http://localhost:9001/3.0/users?count=1&page=1')
entry 0:
 created_on: 2005-08-01T07:49:23
 display_name: Anne Person
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
http_etag: "..."
start: 0
total_size: 2

>>> dump_json('http://localhost:9001/3.0/users?count=1&page=2')
entry 0:
 created_on: 2005-08-01T07:49:23
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/2
 user_id: 2
http_etag: "..."
start: 1
total_size: 2

Creating users

New users can be created by POSTing to the users collection. At a minimum,
the user’s email address must be provided.

>>> dump_json('http://localhost:9001/3.0/users', {
... 'email': 'cris@example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/3
server: ...
status: 201

Cris is now a user known to the system, but he has no display name.

>>> user_manager.get_user('cris@example.com')
<User "" (3) at ...>

Cris’s user record can also be accessed via the REST API, using her user id.
Note that because no password was given when the record was created, a random
one was assigned to her.

>>> dump_json('http://localhost:9001/3.0/users/3')
created_on: 2005-08-01T07:49:23
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/3
user_id: 3

Because email addresses just have an @ sign in then, there’s no confusing
them with user ids. Thus, Cris’s record can be retrieved via her email
address.

>>> dump_json('http://localhost:9001/3.0/users/cris@example.com')
created_on: 2005-08-01T07:49:23
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/3
user_id: 3

Providing a display name

When a user is added, a display name can be provided.

>>> transaction.abort()
>>> dump_json('http://localhost:9001/3.0/users', {
... 'email': 'dave@example.com',
... 'display_name': 'Dave Person',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/4
server: ...
status: 201

Dave’s user record includes his display name.

>>> dump_json('http://localhost:9001/3.0/users/4')
created_on: 2005-08-01T07:49:23
display_name: Dave Person
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/4
user_id: 4

Providing passwords

To avoid getting assigned a random, and irretrievable password (but one which
can be reset), you can provide a password when the user is created. By
default, the password is provided in plain text, and it is hashed by Mailman
before being stored.

>>> transaction.abort()
>>> dump_json('http://localhost:9001/3.0/users', {
... 'email': 'elly@example.com',
... 'display_name': 'Elly Person',
... 'password': 'supersekrit',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/5
server: ...
status: 201

When we view Elly’s user record, we can tell that her password has been hashed
because it has the hash algorithm prefix (i.e. the {plaintext} marker).

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: False
password: {plaintext}supersekrit
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Updating users

Dave’s display name can be changed through the REST API.

>>> dump_json('http://localhost:9001/3.0/users/4', {
... 'display_name': 'David Person',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

Dave’s display name has been updated.

>>> dump_json('http://localhost:9001/3.0/users/dave@example.com')
created_on: 2005-08-01T07:49:23
display_name: David Person
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/4
user_id: 4

Dave can also be assigned a new password by providing in the new cleartext
password. Mailman will hash this before it is stored internally.

>>> dump_json('http://localhost:9001/3.0/users/4', {
... 'cleartext_password': 'clockwork angels',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

As described above, even though you see {plaintext}clockwork angels below,
it has still been hashed before storage. The default hashing algorithm for
the test suite is a plain text hash, but you can see that it works by the
addition of the algorithm prefix.

>>> dump_json('http://localhost:9001/3.0/users/4')
created_on: 2005-08-01T07:49:23
display_name: David Person
http_etag: "..."
is_server_owner: False
password: {plaintext}clockwork angels
self_link: http://localhost:9001/3.0/users/4
user_id: 4

You can change both the display name and the password by PUTing the full
resource.

>>> dump_json('http://localhost:9001/3.0/users/4', {
... 'cleartext_password': 'the garden',
... 'display_name': 'David Personhood',
... 'is_server_owner': False,
... }, method='PUT')
content-length: 0
date: ...
server: ...
status: 204

Dave’s user record has been updated.

>>> dump_json('http://localhost:9001/3.0/users/dave@example.com')
created_on: 2005-08-01T07:49:23
display_name: David Personhood
http_etag: "..."
is_server_owner: False
password: {plaintext}the garden
self_link: http://localhost:9001/3.0/users/4
user_id: 4

Deleting users via the API

Users can also be deleted via the API.

>>> dump_json('http://localhost:9001/3.0/users/cris@example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

User addresses

Fred may have any number of email addresses associated with his user account,
and we can find them all through the API.

Through some other means, Fred registers a bunch of email addresses and
associates them with his user account.

>>> fred = user_manager.create_user('fred@example.com', 'Fred Person')
>>> fred.register('fperson@example.com')
<Address: fperson@example.com [not verified] at ...>
>>> fred.register('fred.person@example.com')
<Address: fred.person@example.com [not verified] at ...>
>>> fred.register('Fred.Q.Person@example.com')
<Address: Fred.Q.Person@example.com [not verified]
 key: fred.q.person@example.com at ...>
>>> transaction.commit()

When we access Fred’s addresses via the REST API, they are sorted in lexical
order by original (i.e. case-preserved) email address.

>>> dump_json('http://localhost:9001/3.0/users/fred@example.com/addresses')
entry 0:
 email: fred.q.person@example.com
 http_etag: "..."
 original_email: Fred.Q.Person@example.com
 registered_on: 2005-08-01T07:49:23
 self_link:
 http://localhost:9001/3.0/addresses/fred.q.person@example.com
 user: http://localhost:9001/3.0/users/6
entry 1:
 email: fperson@example.com
 http_etag: "..."
 original_email: fperson@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/fperson@example.com
 user: http://localhost:9001/3.0/users/6
entry 2:
 email: fred.person@example.com
 http_etag: "..."
 original_email: fred.person@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/fred.person@example.com
 user: http://localhost:9001/3.0/users/6
entry 3:
 display_name: Fred Person
 email: fred@example.com
 http_etag: "..."
 original_email: fred@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/fred@example.com
 user: http://localhost:9001/3.0/users/6
http_etag: "..."
start: 0
total_size: 4

In fact, since these are all associated with Fred’s user account, any of the
addresses can be used to look up Fred’s user record.

>>> dump_json('http://localhost:9001/3.0/users/fred@example.com')
created_on: 2005-08-01T07:49:23
display_name: Fred Person
http_etag: "..."
is_server_owner: False
self_link: http://localhost:9001/3.0/users/6
user_id: 6

>>> dump_json('http://localhost:9001/3.0/users/fred.person@example.com')
created_on: 2005-08-01T07:49:23
display_name: Fred Person
http_etag: "..."
is_server_owner: False
self_link: http://localhost:9001/3.0/users/6
user_id: 6

>>> dump_json('http://localhost:9001/3.0/users/fperson@example.com')
created_on: 2005-08-01T07:49:23
display_name: Fred Person
http_etag: "..."
is_server_owner: False
self_link: http://localhost:9001/3.0/users/6
user_id: 6

>>> dump_json('http://localhost:9001/3.0/users/Fred.Q.Person@example.com')
created_on: 2005-08-01T07:49:23
display_name: Fred Person
http_etag: "..."
is_server_owner: False
self_link: http://localhost:9001/3.0/users/6
user_id: 6

Verifying passwords

A user’s password is stored internally in hashed form. Logging in a user is
the process of verifying a provided clear text password against the hashed
internal password.

When Elly was added as a user, she provided a password in the clear. Now the
password is hashed and getting her user record returns the hashed password.

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: False
password: {plaintext}supersekrit
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Unless the client can run the hashing algorithm on the login text that Elly
provided, and do its own comparison, the client should let the REST API handle
password verification.

This time, Elly successfully logs into Mailman.

>>> dump_json('http://localhost:9001/3.0/users/5/login', {
... 'cleartext_password': 'supersekrit',
... }, method='POST')
content-length: 0
date: ...
server: ...
status: 204

Server owners

Users can be designated as server owners. Elly is not currently a server
owner.

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: False
password: {plaintext}supersekrit
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Let’s make her a server owner.

>>> dump_json('http://localhost:9001/3.0/users/5', {
... 'is_server_owner': True,
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: True
password: {plaintext}supersekrit
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Elly later retires as server owner.

>>> dump_json('http://localhost:9001/3.0/users/5', {
... 'is_server_owner': False,
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Gwen, a new users, takes over as a server owner.

>>> dump_json('http://localhost:9001/3.0/users', {
... 'display_name': 'Gwen Person',
... 'email': 'gwen@example.com',
... 'is_server_owner': True,
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/7
server: ...
status: 201

>>> dump_json('http://localhost:9001/3.0/users/7')
created_on: 2005-08-01T07:49:23
display_name: Gwen Person
http_etag: "..."
is_server_owner: True
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/7
user_id: 7

Chains

When a new message is posted to a mailing list, Mailman uses a set of rule
chains to decide whether the message gets accepted for posting, rejected,
discarded, or held for moderator approval.

There are a number of built-in chains available that act as end-points in the
processing of messages.

The Discard chain

The discard chain simply throws the message away.

>>> chain = config.chains['discard']
>>> print(chain.name)
discard
>>> print(chain.description)
Discard a message and stop processing.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... An important message.
... """)

>>> def print_msgid(event):
... print('{0}: {1}'.format(
... event.chain.name.upper(), event.msg.get('message-id', 'n/a')))

>>> from mailman.core.chains import process
>>> from mailman.testing.helpers import event_subscribers

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {}, 'discard')
DISCARD: <first>

The Reject chain

The reject chain bounces the message back to the original sender, and logs
this action.

>>> chain = config.chains['reject']
>>> print(chain.name)
reject
>>> print(chain.description)
Reject/bounce a message and stop processing.

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {}, 'reject')
REJECT: <first>

The bounce message is now sitting in the virgin queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> qfiles = get_queue_messages('virgin')
>>> len(qfiles)
1
>>> print(qfiles[0].msg.as_string())
Subject: My first post
From: test-owner@example.com
To: aperson@example.com
...
[No bounce details are available]
...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
<BLANKLINE>
An important message.
<BLANKLINE>
...

The Hold Chain

The hold chain places the message into the administrative request database
and depending on the list’s settings, sends a notification to both the
original sender and the list moderators.

>>> chain = config.chains['hold']
>>> print(chain.name)
hold
>>> print(chain.description)
Hold a message and stop processing.

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {}, 'hold')
HOLD: <first>

There are now two messages in the virgin queue, one to the list moderators and
one to the original author.

>>> qfiles = get_queue_messages('virgin', sort_on='to')
>>> len(qfiles)
2

One of the message is addressed to the mailing list moderators, and the other
is addressed to the original sender.

>>> from operator import itemgetter
>>> messages = sorted((item.msg for item in qfiles),
... key=itemgetter('to'), reverse=True)

This one is addressed to the list moderators.

>>> print(messages[0].as_string())
Subject: test@example.com post from aperson@example.com requires approval
From: test-owner@example.com
To: test-owner@example.com
MIME-Version: 1.0
...
As list administrator, your authorization is requested for the
following mailing list posting:
<BLANKLINE>
 List: test@example.com
 From: aperson@example.com
 Subject: My first post
<BLANKLINE>
The message is being held because:
<BLANKLINE>
 N/A
<BLANKLINE>
At your convenience, visit your dashboard to approve or deny the
request.
<BLANKLINE>
...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Message-ID-Hash: RXJU4JL6N2OUN3OYMXXPPSCR7P7JE2BW
<BLANKLINE>
An important message.
<BLANKLINE>
...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Subject: confirm ...
From: test-request@example.com
...
<BLANKLINE>
If you reply to this message, keeping the Subject: header intact,
Mailman will discard the held message. Do this if the message is
spam. If you reply to this message and include an Approved: header
with the list password in it, the message will be approved for posting
to the list. The Approved: header can also appear in the first line
of the body of the reply.
...

This message is addressed to the sender of the message.

>>> print(messages[1].as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Your message to test@example.com awaits moderator approval
From: test-bounces@example.com
To: aperson@example.com
...
Your mail to 'test@example.com' with the subject
<BLANKLINE>
 My first post
<BLANKLINE>
Is being held until the list moderator can review it for approval.
<BLANKLINE>
The message is being held because:
<BLANKLINE>
 N/A
<BLANKLINE>
Either the message will get posted to the list, or you will receive
notification of the moderator's decision.

The Accept chain

The accept chain sends the message on the pipeline queue, where it will be
processed and sent on to the list membership.

>>> chain = config.chains['accept']
>>> print(chain.name)
accept
>>> print(chain.description)
Accept a message.

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {}, 'accept')
ACCEPT: <first>

>>> qfiles = get_queue_messages('pipeline')
>>> len(qfiles)
1
>>> print(qfiles[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Message-ID-Hash: RXJU4JL6N2OUN3OYMXXPPSCR7P7JE2BW

An important message.

Run-time chains

We can also define chains at run time, and these chains can be mutated.
Run-time chains are made up of links where each link associates both a rule
and a jump. The rule is really a rule name, which is looked up when
needed. The jump names a chain which is jumped to if the rule matches.

There is one built-in posting chain. This is the default chain to use when no
other input chain is defined for a mailing list. It runs through the default
rules.

>>> chain = config.chains['default-posting-chain']
>>> print(chain.name)
default-posting-chain
>>> print(chain.description)
The built-in moderation chain.

Once the sender is a member of the mailing list, the previously created
message is innocuous enough that it should pass through all default rules.
This message will end up in the pipeline queue.

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist, 'Anne')
<Member: aperson@example.com on test@example.com as MemberRole.member>

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {})
ACCEPT: <first>

>>> qfiles = get_queue_messages('pipeline')
>>> len(qfiles)
1
>>> print(qfiles[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Message-ID-Hash: RXJU4JL6N2OUN3OYMXXPPSCR7P7JE2BW
X-Mailman-Rule-Misses: approved; emergency; loop; member-moderation;
 administrivia; implicit-dest; max-recipients; max-size;
 news-moderation; no-subject; suspicious-header; nonmember-moderation

An important message.

In addition, the message metadata now contains lists of all rules that have
hit and all rules that have missed.

>>> dump_list(qfiles[0].msgdata['rule_hits'])
Empty
>>> dump_list(qfiles[0].msgdata['rule_misses'])
administrivia
approved
emergency
implicit-dest
loop
max-recipients
max-size
member-moderation
news-moderation
no-subject
nonmember-moderation
suspicious-header

Runners

The runners are the processes that perform long-running tasks, such as
moving messages around the Mailman queues. Some runners don’t manage queues,
such as the LMTP and REST API handling runners. Each runner that manages a
queue directory though, is responsible for a slice of the hash space. It
processes all the files in its slice, sleeps a little while, then wakes up and
runs through its queue files again.

Basic architecture

The basic architecture of runner is implemented in the base class that all
runners inherit from. This base class implements a .run() method that
runs continuously in a loop until the .stop() method is called.

>>> mlist = create_list('test@example.com')

Here is a very simple derived runner class. Runners use a configuration
section in the configuration files to determine run characteristics, such as
the queue directory to use. Here we push a configuration section for the test
runner.

>>> config.push('test-runner', """
... [runner.test]
... max_restarts: 1
... """)

>>> from mailman.core.runner import Runner
>>> class TestableRunner(Runner):
... def _dispose(self, mlist, msg, msgdata):
... self.msg = msg
... self.msgdata = msgdata
... return False
...
... def _do_periodic(self):
... self.stop()
...
... def _snooze(self, filecnt):
... return

>>> runner = TestableRunner('test')

This runner doesn’t do much except run once, storing the message and metadata
on instance variables.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
...
... A test message.
... """)
>>> switchboard = config.switchboards['test']
>>> filebase = switchboard.enqueue(msg, listid=mlist.list_id,
... foo='yes', bar='no')
>>> runner.run()
>>> print(runner.msg.as_string())
From: aperson@example.com
To: test@example.com
<BLANKLINE>
A test message.
<BLANKLINE>
>>> dump_msgdata(runner.msgdata)
_parsemsg: False
bar : no
foo : yes
lang : en
listid : test.example.com
version : 3

XXX More of the Runner API should be tested.

The switchboard

The switchboard is subsystem that moves messages between queues. Each
instance of a switchboard is responsible for one queue directory.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com
...
... A test message.
... """)

Create a switchboard by giving its queue name and directory.

>>> import os
>>> queue_directory = os.path.join(config.QUEUE_DIR, 'test')
>>> from mailman.core.switchboard import Switchboard
>>> switchboard = Switchboard('test', queue_directory)
>>> print(switchboard.name)
test
>>> switchboard.queue_directory == queue_directory
True

Here’s a helper function for ensuring things work correctly.

>>> def check_qfiles(directory=None):
... if directory is None:
... directory = queue_directory
... files = {}
... for qfile in os.listdir(directory):
... root, ext = os.path.splitext(qfile)
... files[ext] = files.get(ext, 0) + 1
... if len(files) == 0:
... print('empty')
... for ext in sorted(files):
... print('{0}: {1}'.format(ext, files[ext]))

Enqueing and dequeing

The message can be enqueued with metadata specified in the passed in
dictionary.

>>> filebase = switchboard.enqueue(msg)
>>> check_qfiles()
.pck: 1

To read the contents of a queue file, dequeue it.

>>> msg, msgdata = switchboard.dequeue(filebase)
>>> print(msg.as_string())
From: aperson@example.com
To: _xtest@example.com
<BLANKLINE>
A test message.
<BLANKLINE>
>>> dump_msgdata(msgdata)
_parsemsg: False
version : 3
>>> check_qfiles()
.bak: 1

To complete the dequeing process, removing all traces of the message file,
finish it (without preservation).

>>> switchboard.finish(filebase)
>>> check_qfiles()
empty

When enqueing a file, you can provide additional metadata keys by using
keyword arguments.

>>> filebase = switchboard.enqueue(msg, {'foo': 1}, bar=2)
>>> msg, msgdata = switchboard.dequeue(filebase)
>>> switchboard.finish(filebase)
>>> dump_msgdata(msgdata)
_parsemsg: False
bar : 2
foo : 1
version : 3

Keyword arguments override keys from the metadata dictionary.

>>> filebase = switchboard.enqueue(msg, {'foo': 1}, foo=2)
>>> msg, msgdata = switchboard.dequeue(filebase)
>>> switchboard.finish(filebase)
>>> dump_msgdata(msgdata)
_parsemsg: False
foo : 2
version : 3

Iterating over files

There are two ways to iterate over all the files in a switchboard’s queue.
Normally, queue files end in .pck (for ‘pickle’) and the easiest way to
iterate over just these files is to use the .files attribute.

>>> filebase_1 = switchboard.enqueue(msg, foo=1)
>>> filebase_2 = switchboard.enqueue(msg, foo=2)
>>> filebase_3 = switchboard.enqueue(msg, foo=3)
>>> filebases = sorted((filebase_1, filebase_2, filebase_3))
>>> sorted(switchboard.files) == filebases
True
>>> check_qfiles()
.pck: 3

You can also use the .get_files() method if you want to iterate over all the
file bases for some other extension.

>>> for filebase in switchboard.get_files():
... msg, msgdata = switchboard.dequeue(filebase)
>>> bakfiles = sorted(switchboard.get_files('.bak'))
>>> bakfiles == filebases
True
>>> check_qfiles()
.bak: 3
>>> for filebase in switchboard.get_files('.bak'):
... switchboard.finish(filebase)
>>> check_qfiles()
empty

Recovering files

Calling .dequeue() without calling .finish() leaves .bak backup files in
place. These can be recovered when the switchboard is instantiated.

>>> filebase_1 = switchboard.enqueue(msg, foo=1)
>>> filebase_2 = switchboard.enqueue(msg, foo=2)
>>> filebase_3 = switchboard.enqueue(msg, foo=3)
>>> for filebase in switchboard.files:
... msg, msgdata = switchboard.dequeue(filebase)
... # Don't call .finish()
>>> check_qfiles()
.bak: 3
>>> switchboard_2 = Switchboard('test', queue_directory, recover=True)
>>> check_qfiles()
.pck: 3

The files can be recovered explicitly.

>>> for filebase in switchboard.files:
... msg, msgdata = switchboard.dequeue(filebase)
... # Don't call .finish()
>>> check_qfiles()
.bak: 3
>>> switchboard.recover_backup_files()
>>> check_qfiles()
.pck: 3

But the files will only be recovered at most three times before they are
considered defective. In order to prevent mail bombs and loops, once this
maximum is reached, the files will be preserved in the ‘bad’ queue.

>>> for filebase in switchboard.files:
... msg, msgdata = switchboard.dequeue(filebase)
... # Don't call .finish()
>>> check_qfiles()
.bak: 3
>>> switchboard.recover_backup_files()
>>> check_qfiles()
empty

>>> bad = config.switchboards['bad']
>>> check_qfiles(bad.queue_directory)
.psv: 3

Clean up

>>> for file in os.listdir(bad.queue_directory):
... os.remove(os.path.join(bad.queue_directory, file))
>>> check_qfiles(bad.queue_directory)
empty

Queue slices

XXX Add tests for queue slices.

Banning email addresses

Email addresses can be banned from ever subscribing, either to a specific
mailing list or globally within the Mailman system. Both explicit email
addresses and email address patterns can be banned.

Bans are managed through the Ban Manager. There are ban managers for
specific lists, and there is a global ban manager. To get access to the
global ban manager, adapt None.

>>> from mailman.interfaces.bans import IBanManager
>>> global_bans = IBanManager(None)

At first, no email addresses are banned globally.

>>> global_bans.is_banned('anne@example.com')
False

To get a list-specific ban manager, adapt the mailing list object.

>>> mlist = create_list('test@example.com')
>>> test_bans = IBanManager(mlist)

There are no bans for this particular list.

>>> test_bans.is_banned('bart@example.com')
False

Specific bans

An email address can be banned from a specific mailing list by adding a ban to
the list’s ban manager.

>>> test_bans.ban('cris@example.com')
>>> test_bans.is_banned('cris@example.com')
True
>>> test_bans.is_banned('bart@example.com')
False

However, this is not a global ban.

>>> global_bans.is_banned('cris@example.com')
False

Global bans

An email address can be banned globally, so that it cannot be subscribed to
any mailing list.

>>> global_bans.ban('dave@example.com')

Because there is a global ban, Dave is also banned from the mailing list.

>>> test_bans.is_banned('dave@example.com')
True

Even when a new mailing list is created, Dave is still banned from this list
because of his global ban.

>>> sample = create_list('sample@example.com')
>>> sample_bans = IBanManager(sample)
>>> sample_bans.is_banned('dave@example.com')
True

Dave is of course banned globally.

>>> global_bans.is_banned('dave@example.com')
True

Cris however is not banned globally.

>>> global_bans.is_banned('cris@example.com')
False

Even though Cris is not banned globally, we can add a global ban for her.

>>> global_bans.ban('cris@example.com')
>>> global_bans.is_banned('cris@example.com')
True

Cris is now banned from all mailing lists.

>>> test_bans.is_banned('cris@example.com')
True
>>> sample_bans.is_banned('cris@example.com')
True

We can remove the global ban to once again just ban her address from just the
test list.

>>> global_bans.unban('cris@example.com')
>>> global_bans.is_banned('cris@example.com')
False
>>> test_bans.is_banned('cris@example.com')
True
>>> sample_bans.is_banned('cris@example.com')
False

Regular expression bans

Entire email address patterns can be banned, both for a specific mailing list
and globally, just as specific addresses can be banned. Use this for example,
when an entire domain is a spam faucet. When using a pattern, the email
address must start with a caret (^).

>>> test_bans.ban('^.*@example.org')

Now, no one from example.org can subscribe to the test mailing list.

>>> test_bans.is_banned('elle@example.org')
True
>>> test_bans.is_banned('eperson@example.org')
True

example.com addresses are not banned.

>>> test_bans.is_banned('elle@example.com')
False

example.org addresses are not banned globally, nor for any other mailing
list.

>>> sample_bans.is_banned('elle@example.org')
False
>>> global_bans.is_banned('elle@example.org')
False

Of course, we can ban everyone from example.org globally too.

>>> global_bans.ban('^.*@example.org')
>>> sample_bans.is_banned('elle@example.org')
True
>>> global_bans.is_banned('elle@example.org')
True

We can remove the mailing list ban on the pattern, though the global ban will
still be in place.

>>> test_bans.unban('^.*@example.org')
>>> test_bans.is_banned('elle@example.org')
True
>>> sample_bans.is_banned('elle@example.org')
True
>>> global_bans.is_banned('elle@example.org')
True

But once the global ban is removed, everyone from example.org can subscribe to
the mailing lists.

>>> global_bans.unban('^.*@example.org')
>>> test_bans.is_banned('elle@example.org')
False
>>> sample_bans.is_banned('elle@example.org')
False
>>> global_bans.is_banned('elle@example.org')
False

Adding and removing bans

It is not an error to add a ban more than once. These are just ignored.

>>> test_bans.ban('fred@example.com')
>>> test_bans.ban('fred@example.com')
>>> test_bans.is_banned('fred@example.com')
True

Nor is it an error to remove a ban more than once.

>>> test_bans.unban('fred@example.com')
>>> test_bans.unban('fred@example.com')
>>> test_bans.is_banned('fred@example.com')
False

Bounces

An important feature of Mailman is automatic bounce processing.

Bounces, or message rejection

Mailman can bounce messages back to the original sender. This is essentially
equivalent to rejecting the message with notification. Mailing lists can
bounce a message with an optional error message.

>>> mlist = create_list('text@example.com')

Any message can be bounced.

>>> msg = message_from_string("""\
... To: text@example.com
... From: aperson@example.com
... Subject: Something important
...
... I sometimes say something important.
... """)

Bounce a message by passing in the original message, and an optional error
message. The bounced message ends up in the virgin queue, awaiting sending
to the original message author.

>>> from mailman.app.bounces import bounce_message
>>> bounce_message(mlist, msg)
>>> from mailman.testing.helpers import get_queue_messages
>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> print(items[0].msg.as_string())
Subject: Something important
From: text-owner@example.com
To: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="..."
Message-ID: ...
Date: ...
Precedence: bulk
<BLANKLINE>
--...
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
<BLANKLINE>
[No bounce details are available]
--...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
To: text@example.com
From: aperson@example.com
Subject: Something important
<BLANKLINE>
I sometimes say something important.
<BLANKLINE>
--...--

An error message can be given when the message is bounced, and this will be
included in the payload of the text/plain part. The error message must be
passed in as an instance of a RejectMessage exception.

>>> from mailman.core.errors import RejectMessage
>>> error = RejectMessage("This wasn't very important after all.")
>>> bounce_message(mlist, msg, error)
>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> print(items[0].msg.as_string())
Subject: Something important
From: text-owner@example.com
To: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="..."
Message-ID: ...
Date: ...
Precedence: bulk
<BLANKLINE>
--...
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
<BLANKLINE>
This wasn't very important after all.
--...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
To: text@example.com
From: aperson@example.com
Subject: Something important
<BLANKLINE>
I sometimes say something important.
<BLANKLINE>
--...--

Hooks

Mailman defines two initialization hooks, one which is run early in the
initialization process and the other run late in the initialization process.
Hooks name an importable callable so it must be accessible on sys.path.

>>> import os, sys
>>> from mailman.config import config
>>> config_directory = os.path.dirname(config.filename)
>>> sys.path.insert(0, config_directory)

>>> hook_path = os.path.join(config_directory, 'hooks.py')
>>> with open(hook_path, 'w') as fp:
... print("""\
... counter = 1
... def pre_hook():
... global counter
... print('pre-hook:', counter)
... counter += 1
...
... def post_hook():
... global counter
... print('post-hook:', counter)
... counter += 1
... """, file=fp)
>>> fp.close()

Pre-hook

We can set the pre-hook in the configuration file.

>>> config_path = os.path.join(config_directory, 'hooks.cfg')
>>> with open(config_path, 'w') as fp:
... print("""\
... [meta]
... extends: test.cfg
...
... [mailman]
... pre_hook: hooks.pre_hook
... """, file=fp)

The hooks are run in the second and third steps of initialization. However,
we can’t run those initialization steps in process, so call a command line
script that will produce no output to force the hooks to run.

>>> import subprocess
>>> from mailman.testing.layers import ConfigLayer
>>> def call():
... exe = os.path.join(os.path.dirname(sys.executable), 'mailman')
... env = dict(MAILMAN_CONFIG_FILE=config_path,
... PYTHONPATH=config_directory)
... test_cfg = os.environ.get('MAILMAN_EXTRA_TESTING_CFG')
... if test_cfg is not None:
... env['MAILMAN_EXTRA_TESTING_CFG'] = test_cfg
... proc = subprocess.Popen(
... [exe, 'lists', '--domain', 'ignore', '-q'],
... cwd=ConfigLayer.root_directory, env=env,
... universal_newlines=True,
... stdout=subprocess.PIPE, stderr=subprocess.PIPE)
... stdout, stderr = proc.communicate()
... assert proc.returncode == 0, stderr
... print(stdout)

>>> call()
pre-hook: 1

>>> os.remove(config_path)

Post-hook

We can set the post-hook in the configuration file.

>>> with open(config_path, 'w') as fp:
... print("""\
... [meta]
... extends: test.cfg
...
... [mailman]
... post_hook: hooks.post_hook
... """, file=fp)

>>> call()
post-hook: 1

>>> os.remove(config_path)

Running both hooks

We can set the pre- and post-hooks in the configuration file.

>>> with open(config_path, 'w') as fp:
... print("""\
... [meta]
... extends: test.cfg
...
... [mailman]
... pre_hook: hooks.pre_hook
... post_hook: hooks.post_hook
... """, file=fp)

>>> call()
pre-hook: 1
post-hook: 2

Application level list life cycle

The low-level way to create and delete a mailing list is to use the
IListManager interface. This interface simply adds or removes the
appropriate database entries to record the list’s creation.

There is a higher level interface for creating and deleting mailing lists
which performs additional tasks such as:

	validating the list’s posting address (which also serves as the list’s
fully qualified name);

	ensuring that the list’s domain is registered;

	applying a list style to the new list;

	creating and assigning list owners;

	notifying watchers of list creation;

	creating ancillary artifacts (such as the list’s on-disk directory)

Creating a list with owners

You can also specify a list of owner email addresses. If these addresses are
not yet known, they will be registered, and new users will be linked to them.

>>> owners = [
... 'aperson@example.com',
... 'bperson@example.com',
... 'cperson@example.com',
... 'dperson@example.com',
...]

>>> ant = create_list('ant@example.com', owners)
>>> dump_list(address.email for address in ant.owners.addresses)
aperson@example.com
bperson@example.com
cperson@example.com
dperson@example.com

None of the owner addresses are verified.

>>> any(address.verified_on is not None
... for address in ant.owners.addresses)
False

However, all addresses are linked to users.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)
>>> for address in owners:
... user = user_manager.get_user(address)
... print(int(user.user_id.int), list(user.addresses)[0])
1 aperson@example.com
2 bperson@example.com
3 cperson@example.com
4 dperson@example.com

If you create a mailing list with owner addresses that are already known to
the system, they won’t be created again.

>>> bee = create_list('bee@example.com', owners)
>>> from operator import attrgetter
>>> for user in sorted(bee.owners.users, key=attrgetter('user_id')):
... print(int(user.user_id.int), list(user.addresses)[0])
1 aperson@example.com
2 bperson@example.com
3 cperson@example.com
4 dperson@example.com

Deleting a list

Removing a mailing list deletes the list, all its subscribers, and any related
artifacts.

>>> from mailman.app.lifecycle import remove_list
>>> remove_list(bee)

>>> from mailman.interfaces.listmanager import IListManager
>>> print(getUtility(IListManager).get('bee@example.com'))
None

We should now be able to completely recreate the mailing list.

>>> buzz = create_list('bee@example.com', owners)
>>> dump_list(address.email for address in bee.owners.addresses)
aperson@example.com
bperson@example.com
cperson@example.com
dperson@example.com

Messages

Mailman has its own Message classes, derived from the standard
email.message.Message class, but providing additional useful methods.

User notifications

When Mailman needs to send a message to a user, it creates a
UserNotification instance, and then calls the .send() method on this
object. This method requires a mailing list instance.

>>> mlist = create_list('test@example.com')

The UserNotification constructor takes the recipient address, the sender
address, an optional subject, optional body text, and optional language.

>>> from mailman.email.message import UserNotification
>>> msg = UserNotification(
... 'aperson@example.com',
... 'test@example.com',
... 'Something you need to know',
... 'I needed to tell you this.')
>>> msg.send(mlist)

The message will end up in the virgin queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Something you need to know
From: test@example.com
To: aperson@example.com
Message-ID: ...
Date: ...
Precedence: bulk
<BLANKLINE>
I needed to tell you this.

The message above got a Precedence: bulk header added by default. If the
message we’re sending already has a Precedence: header, it shouldn’t be
changed.

>>> del msg['precedence']
>>> msg['Precedence'] = 'list'
>>> msg.send(mlist)

Again, the message will end up in the virgin queue but with the original
Precedence: header.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg['precedence'])
list

Sometimes we want to send the message without a Precedence: header such as
when we send a probe message.

>>> del msg['precedence']
>>> msg.send(mlist, add_precedence=False)

Again, the message will end up in the virgin queue but without the
Precedence: header.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg['precedence'])
None

However, if the message already has a Precedence: header, setting the
precedence=False argument will have no effect.

>>> msg['Precedence'] = 'junk'
>>> msg.send(mlist, add_precedence=False)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg['precedence'])
junk

Application level moderation

At an application level, moderation involves holding messages and membership
changes for moderator approval. This utilizes the lower level interface for list-centric moderation requests.

Moderation is always mailing list-centric.

>>> mlist = create_list('ant@example.com')
>>> mlist.preferred_language = 'en'
>>> mlist.display_name = 'A Test List'
>>> mlist.admin_immed_notify = False

We’ll use the lower level API for diagnostic purposes.

>>> from mailman.interfaces.requests import IListRequests
>>> requests = IListRequests(mlist)

Message moderation

Holding messages

Anne posts a message to the mailing list, but she is not a member of the list,
so the message is held for moderator approval.

>>> msg = message_from_string("""\
... From: anne@example.org
... To: ant@example.com
... Subject: Something important
... Message-ID: <aardvark>
...
... Here's something important about our mailing list.
... """)

Holding a message means keeping a copy of it that a moderator must approve
before the message is posted to the mailing list. To hold the message, the
message, its metadata, and a reason for the hold must be provided. In this
case, we won’t include any additional metadata.

>>> from mailman.app.moderator import hold_message
>>> hold_message(mlist, msg, {}, 'Needs approval')
1

We can also hold a message with some additional metadata.

>>> msg = message_from_string("""\
... From: bart@example.org
... To: ant@example.com
... Subject: Something important
... Message-ID: <badger>
...
... Here's something important about our mailing list.
... """)
>>> msgdata = dict(sender='anne@example.com', approved=True)

>>> hold_message(mlist, msg, msgdata, 'Feeling ornery')
2

Disposing of messages

The moderator can select one of several dispositions:

	discard - throw the message away.

	reject - bounces the message back to the original author.

	defer - defer any action on the message (continue to hold it)

	accept - accept the message for posting.

The most trivial is to simply defer a decision for now.

>>> from mailman.interfaces.action import Action
>>> from mailman.app.moderator import handle_message
>>> handle_message(mlist, 1, Action.defer)

This leaves the message in the requests database.

>>> key, data = requests.get_request(1)
>>> print(key)
<aardvark>

The moderator can also discard the message.

>>> handle_message(mlist, 1, Action.discard)
>>> print(requests.get_request(1))
None

The message can be rejected, which bounces the message back to the original
sender.

>>> handle_message(mlist, 2, Action.reject, 'Off topic')

The message is no longer available in the requests database.

>>> print(requests.get_request(2))
None

And there is one message in the virgin queue - the rejection notice.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Request to mailing list "A Test List" rejected
From: ant-bounces@example.com
To: bart@example.org
...
<BLANKLINE>
Your request to the ant@example.com mailing list
<BLANKLINE>
 Posting of your message titled "Something important"
<BLANKLINE>
has been rejected by the list moderator. The moderator gave the
following reason for rejecting your request:
<BLANKLINE>
"Off topic"
<BLANKLINE>
Any questions or comments should be directed to the list administrator
at:
<BLANKLINE>
 ant-owner@example.com
<BLANKLINE>

The bounce gets sent to the original sender.

>>> for recipient in sorted(messages[0].msgdata['recipients']):
... print(recipient)
bart@example.org

Or the message can be approved.

>>> msg = message_from_string("""\
... From: cris@example.org
... To: ant@example.com
... Subject: Something important
... Message-ID: <caribou>
...
... Here's something important about our mailing list.
... """)
>>> id = hold_message(mlist, msg, {}, 'Needs approval')
>>> handle_message(mlist, id, Action.accept)

This places the message back into the incoming queue for further processing,
however the message metadata indicates that the message has been approved.

>>> messages = get_queue_messages('pipeline')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
From: cris@example.org
To: ant@example.com
Subject: Something important
...

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
approved : True
moderator_approved: True
version : 3

Forwarding the message

The message can be forwarded to another address. This is helpful for getting
the message into the inbox of one of the moderators.

>>> msg = message_from_string("""\
... From: elly@example.org
... To: ant@example.com
... Subject: Something important
... Message-ID: <elephant>
...
... Here's something important about our mailing list.
... """)
>>> req_id = hold_message(mlist, msg, {}, 'Needs approval')
>>> handle_message(mlist, req_id, Action.discard,
... forward=['zack@example.com'])

The forwarded message is in the virgin queue, destined for the moderator.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
Subject: Forward of moderated message
From: ant-bounces@example.com
To: zack@example.com
...

>>> for recipient in sorted(messages[0].msgdata['recipients']):
... print(recipient)
zack@example.com

Holding subscription requests

For closed lists, subscription requests will also be held for moderator
approval. In this case, several pieces of information related to the
subscription must be provided, including the subscriber’s address and real
name, what kind of delivery option they are choosing and their preferred
language.

>>> from mailman.app.moderator import hold_subscription
>>> from mailman.interfaces.member import DeliveryMode
>>> from mailman.interfaces.subscriptions import RequestRecord
>>> req_id = hold_subscription(
... mlist,
... RequestRecord('fred@example.org', 'Fred Person',
... DeliveryMode.regular, 'en'))

Disposing of membership change requests

Just as with held messages, the moderator can select one of several
dispositions for this membership change request. The most trivial is to
simply defer a decision for now.

>>> from mailman.app.moderator import handle_subscription
>>> handle_subscription(mlist, req_id, Action.defer)
>>> requests.get_request(req_id) is not None
True

The held subscription can also be discarded.

>>> handle_subscription(mlist, req_id, Action.discard)
>>> print(requests.get_request(req_id))
None

Gwen tries to subscribe to the mailing list, but…

>>> req_id = hold_subscription(
... mlist,
... RequestRecord('gwen@example.org', 'Gwen Person',
... DeliveryMode.regular, 'en'))

…her request is rejected…

>>> handle_subscription(
... mlist, req_id, Action.reject, 'This is a closed list')
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

…and she receives a rejection notice.

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Request to mailing list "A Test List" rejected
From: ant-bounces@example.com
To: gwen@example.org
...
Your request to the ant@example.com mailing list
<BLANKLINE>
 Subscription request
<BLANKLINE>
has been rejected by the list moderator. The moderator gave the
following reason for rejecting your request:
<BLANKLINE>
"This is a closed list"
...

The subscription can also be accepted. This subscribes the address to the
mailing list.

>>> mlist.send_welcome_message = False
>>> req_id = hold_subscription(
... mlist,
... RequestRecord('herb@example.org', 'Herb Person',
... DeliveryMode.regular, 'en'))

The moderators accept the subscription request.

>>> handle_subscription(mlist, req_id, Action.accept)

And now Herb is a member of the mailing list.

>>> print(mlist.members.get_member('herb@example.org').address)
Herb Person <herb@example.org>

Holding unsubscription requests

Some lists require moderator approval for unsubscriptions. In this case, only
the unsubscribing address is required.

Herb now wants to leave the mailing list, but his request must be approved.

>>> from mailman.app.moderator import hold_unsubscription
>>> req_id = hold_unsubscription(mlist, 'herb@example.org')

As with subscription requests, the unsubscription request can be deferred.

>>> from mailman.app.moderator import handle_unsubscription
>>> handle_unsubscription(mlist, req_id, Action.defer)
>>> print(mlist.members.get_member('herb@example.org').address)
Herb Person <herb@example.org>

The held unsubscription can also be discarded, and the member will remain
subscribed.

>>> handle_unsubscription(mlist, req_id, Action.discard)
>>> print(mlist.members.get_member('herb@example.org').address)
Herb Person <herb@example.org>

The request can be rejected, in which case a message is sent to the member,
and the person remains a member of the mailing list.

>>> req_id = hold_unsubscription(mlist, 'herb@example.org')
>>> handle_unsubscription(mlist, req_id, Action.reject, 'No can do')
>>> print(mlist.members.get_member('herb@example.org').address)
Herb Person <herb@example.org>

Herb gets a rejection notice.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Request to mailing list "A Test List" rejected
From: ant-bounces@example.com
To: herb@example.org
...
Your request to the ant@example.com mailing list

 Unsubscription request

has been rejected by the list moderator. The moderator gave the
following reason for rejecting your request:

"No can do"
...

The unsubscription request can also be accepted. This removes the member from
the mailing list.

>>> req_id = hold_unsubscription(mlist, 'herb@example.org')
>>> mlist.send_goodbye_message = False
>>> handle_unsubscription(mlist, req_id, Action.accept)
>>> print(mlist.members.get_member('herb@example.org'))
None

Notifications

Membership change requests

Usually, the list administrators want to be notified when there are membership
change requests they need to moderate. These notifications are sent when the
list is configured to send them.

>>> mlist.admin_immed_notify = True

Iris tries to subscribe to the mailing list.

>>> req_id = hold_subscription(mlist,
... RequestRecord('iris@example.org', 'Iris Person',
... DeliveryMode.regular, 'en'))

There’s now a message in the virgin queue, destined for the list owner.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: New subscription request to A Test List from iris@example.org
From: ant-owner@example.com
To: ant-owner@example.com
...
Your authorization is required for a mailing list subscription request
approval:
<BLANKLINE>
 For: iris@example.org
 List: ant@example.com

Similarly, the administrator gets notifications on unsubscription requests.
Jeff is a member of the mailing list, and chooses to unsubscribe.

>>> unsub_req_id = hold_unsubscription(mlist, 'jeff@example.org')
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: New unsubscription request from A Test List by jeff@example.org
From: ant-owner@example.com
To: ant-owner@example.com
...
Your authorization is required for a mailing list unsubscription
request approval:
<BLANKLINE>
 By: jeff@example.org
 From: ant@example.com
...

Membership changes

When a new member request is accepted, the mailing list administrators can
receive a membership change notice.

>>> mlist.admin_notify_mchanges = True
>>> mlist.admin_immed_notify = False
>>> handle_subscription(mlist, req_id, Action.accept)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: A Test List subscription notification
From: noreply@example.com
To: ant-owner@example.com
...
Iris Person <iris@example.org> has been successfully subscribed to A
Test List.

Similarly when an unsubscription request is accepted, the administrators can
get a notification.

>>> req_id = hold_unsubscription(mlist, 'iris@example.org')
>>> handle_unsubscription(mlist, req_id, Action.accept)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: A Test List unsubscription notification
From: noreply@example.com
To: ant-owner@example.com
...
Iris Person <iris@example.org> has been removed from A Test List.

Welcome messages

When a member is subscribed to the mailing list via moderator approval, she
can get a welcome message.

>>> mlist.admin_notify_mchanges = False
>>> mlist.send_welcome_message = True
>>> req_id = hold_subscription(mlist,
... RequestRecord('kate@example.org', 'Kate Person',
... DeliveryMode.regular, 'en'))
>>> handle_subscription(mlist, req_id, Action.accept)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Welcome to the "A Test List" mailing list
From: ant-request@example.com
To: Kate Person <kate@example.org>
...
Welcome to the "A Test List" mailing list!
...

Goodbye messages

Similarly, when the member’s unsubscription request is approved, she’ll get a
goodbye message.

>>> mlist.send_goodbye_message = True
>>> req_id = hold_unsubscription(mlist, 'kate@example.org')
>>> handle_unsubscription(mlist, req_id, Action.accept)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: You have been unsubscribed from the A Test List mailing list
From: ant-bounces@example.com
To: kate@example.org
...

Pipelines

Pipelines process messages that have been accepted for posting, applying any
modifications and also sending copies of the message to the archives, digests,
NNTP, and outgoing queues. Pipelines are named and consist of a sequence of
handlers, each of which is applied in turn. Unlike rules and chains, there is
no way to stop a pipeline from processing the message once it’s started.

>>> mlist = create_list('test@example.com')
>>> print(mlist.posting_pipeline)
default-posting-pipeline
>>> from mailman.core.pipelines import process

For the purposes of these examples, we’ll enable just one archiver.

>>> from mailman.interfaces.mailinglist import IListArchiverSet
>>> for archiver in IListArchiverSet(mlist).archivers:
... archiver.is_enabled = (archiver.name == 'mhonarc')

Processing a message

Messages hit the pipeline after they’ve been accepted for posting.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
... X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
...
... First post!
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata, mlist.posting_pipeline)

The message has been modified with additional headers, footer decorations,
etc.

>>> print(msg.as_string())
From: aperson@example.com
To: test@example.com
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
X-Mailman-Version: ...
Precedence: list
Subject: [Test] My first post
List-Id: <test.example.com>
Archived-At: <http://lists.example.com/.../4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB>
List-Archive: <http://lists.example.com/archives/test@example.com>
List-Help: <mailto:test-request@example.com?subject=help>
List-Post: <mailto:test@example.com>
List-Subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
List-Unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
<BLANKLINE>
First post!

Test mailing list
test@example.com
http://lists.example.com/listinfo/test@example.com
<BLANKLINE>

The message metadata has information about recipients and other stuff.
However there are currently no recipients for this message.

>>> dump_msgdata(msgdata)
original_sender : aperson@example.com
original_subject: My first post
recipients : set()
stripped_subject: My first post

After pipeline processing, the message is now sitting in various other
processing queues.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('archive')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
X-Mailman-Version: ...
Precedence: list
Subject: [Test] My first post
List-Id: <test.example.com>
...

First post!

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
original_sender : aperson@example.com
original_subject: My first post
recipients : set()
stripped_subject: My first post
version : 3

This mailing list is not linked to an NNTP newsgroup, so there’s nothing in
the outgoing nntp queue.

>>> messages = get_queue_messages('nntp')
>>> len(messages)
0

The outgoing queue will hold the copy of the message that will actually get
delivered to end recipients.

>>> messages = get_queue_messages('out')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
X-Mailman-Version: ...
Precedence: list
Subject: [Test] My first post
List-Id: <test.example.com>
...

First post!

Test mailing list
test@example.com
http://lists.example.com/listinfo/test@example.com

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : test.example.com
original_sender : aperson@example.com
original_subject: My first post
recipients : set()
stripped_subject: My first post
version : 3

There’s now one message in the digest mailbox, getting ready to be sent.

>>> from mailman.testing.helpers import digest_mbox
>>> digest = digest_mbox(mlist)
>>> sum(1 for mboxmsg in digest)
1

>>> print(list(digest)[0].as_string())
From: aperson@example.com
To: test@example.com
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
X-Mailman-Version: ...
Precedence: list
Subject: [Test] My first post
List-Id: <test.example.com>
...

First post!

Subscription services

The ISubscriptionService utility provides higher level convenience methods
useful for searching, retrieving, iterating, and removing memberships across
all mailing lists on th esystem. Adding new users is handled by the
IRegistrar interface.

>>> from mailman.interfaces.subscriptions import ISubscriptionService
>>> from zope.component import getUtility
>>> service = getUtility(ISubscriptionService)

You can use the service to get all members of all mailing lists, for any
membership role. At first, there are no memberships.

>>> service.get_members()
[]
>>> sum(1 for member in service)
0
>>> from uuid import UUID
>>> print(service.get_member(UUID(int=801)))
None

Listing members

When there are some members, of any role on any mailing list, they can be
retrieved through the subscription service.

>>> from mailman.app.lifecycle import create_list
>>> ant = create_list('ant@example.com')
>>> bee = create_list('bee@example.com')
>>> cat = create_list('cat@example.com')

Some people become members.

>>> from mailman.interfaces.member import MemberRole
>>> from mailman.testing.helpers import subscribe
>>> anne_1 = subscribe(ant, 'Anne')
>>> anne_2 = subscribe(ant, 'Anne', MemberRole.owner)
>>> bart_1 = subscribe(ant, 'Bart', MemberRole.moderator)
>>> bart_2 = subscribe(bee, 'Bart', MemberRole.owner)
>>> anne_3 = subscribe(cat, 'Anne', email='anne@example.com')
>>> cris_1 = subscribe(cat, 'Cris')

The service can be used to iterate over them.

>>> for member in service.get_members():
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>
<Member: Anne Person <anne@example.com>
 on cat@example.com as MemberRole.member>
<Member: Cris Person <cperson@example.com>
 on cat@example.com as MemberRole.member>

The service can also be used to get the information about a single member.

>>> print(service.get_member(bart_2.member_id))
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>

There is an iteration shorthand for getting all the members.

>>> for member in service:
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>
<Member: Anne Person <anne@example.com>
 on cat@example.com as MemberRole.member>
<Member: Cris Person <cperson@example.com>
 on cat@example.com as MemberRole.member>

Finding members

The subscription service can be used to find memberships based on specific
search criteria. For example, we can find all the mailing lists that Anne is
a member of with her aperson@example.com address.

>>> for member in service.find_members('aperson@example.com'):
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>

There may be no matching memberships.

>>> service.find_members('dave@example.com')
[]

Memberships can also be searched for by user id.

>>> for member in service.find_members(anne_1.user.user_id):
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>

You can find all the memberships for a specific mailing list.

>>> for member in service.find_members(list_id='ant.example.com'):
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>

You can find all the memberships for an address on a specific mailing list,
but you have to give it the list id, not the fqdn listname since the former is
stable but the latter could change if the list is moved.

>>> for member in service.find_members(
... 'bperson@example.com', 'ant.example.com'):
... print(member)
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>

You can find all the memberships for an address with a specific role.

>>> for member in service.find_members(
... list_id='ant.example.com', role=MemberRole.owner):
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>

You can also find a specific membership by all three criteria.

>>> for member in service.find_members(
... 'bperson@example.com', 'bee.example.com', MemberRole.owner):
... print(member)
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>

Removing members

Members can be removed via this service.

>>> len(service.get_members())
6
>>> service.leave('cat.example.com', 'cperson@example.com')
>>> len(service.get_members())
5
>>> for member in service:
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>
<Member: Anne Person <anne@example.com>
 on cat@example.com as MemberRole.member>

System versions

Mailman system information is available through the system object, which
implements the ISystem interface.

>>> from mailman.interfaces.system import ISystem
>>> from mailman.core.system import system
>>> from zope.interface.verify import verifyObject

>>> verifyObject(ISystem, system)
True

The Mailman version is also available via the system object.

>>> print(system.mailman_version)
GNU Mailman ...

The Python version running underneath is also available via the system
object.

The entire python_version string is variable, so this is the best test
we can do.
>>> import sys
>>> system.python_version == sys.version
True

List styles

List styles are a way to name and apply a template of attribute settings to
new mailing lists. Every style has a name, which must be unique.

Styles are generally only applied when a mailing list is created, although
there is no reason why styles can’t be applied to an existing mailing list.
However, when a style changes, the mailing lists using that style are not
automatically updated. Instead, think of styles as the initial set of
defaults for just about any mailing list attribute. In fact, application of a
style to a mailing list can really modify the mailing list in any way.

To start with, there are a few legacy styles.

>>> from zope.component import getUtility
>>> from mailman.interfaces.styles import IStyleManager
>>> manager = getUtility(IStyleManager)
>>> for style in manager.styles:
... print(style.name)
legacy-announce
legacy-default

When you create a mailing list through the low-level IListManager API, no
style is applied.

>>> from mailman.interfaces.listmanager import IListManager
>>> mlist = getUtility(IListManager).create('ant@example.com')
>>> print(mlist.display_name)
None

The legacy default style sets the list’s display name.

>>> manager.get('legacy-default').apply(mlist)
>>> print(mlist.display_name)
Ant

Registering styles

New styles must implement the IStyle interface.

>>> from zope.interface import implementer
>>> from mailman.interfaces.styles import IStyle
>>> @implementer(IStyle)
... class TestStyle:
... name = 'a-test-style'
... def apply(self, mailing_list):
... # Just does something very simple.
... mailing_list.display_name = 'TEST STYLE LIST'

You can register a new style with the style manager.

>>> manager.register(TestStyle())

All registered styles are returned in alphabetical order by style name.

>>> for style in manager.styles:
... print(style.name)
a-test-style
legacy-announce
legacy-default

You can also ask the style manager for the style, by name.

>>> test_style = manager.get('a-test-style')
>>> print(test_style.name)
a-test-style

Unregistering styles

You can unregister a style, making it unavailable in the future.

>>> manager.unregister(test_style)
>>> for style in manager.styles:
... print(style.name)
legacy-announce
legacy-default

Asking for a missing style returns None.

>>> print(manager.get('a-test-style'))
None

Apply styles at list creation

You can specify a style to apply when creating a list through the high-level
API. Let’s start by registering the test style.

>>> manager.register(test_style)

Now, when we use the high level API, we can ask for the style to be applied.

>>> from mailman.app.lifecycle import create_list
>>> mlist = create_list('bee@example.com', style_name=test_style.name)

The style has been applied.

>>> print(mlist.display_name)
TEST STYLE LIST

If no style name is provided when creating the list, the system default style
(taken from the configuration file) is applied.

>>> @implementer(IStyle)
... class AnotherStyle:
... name = 'another-style'
... def apply(self, mailing_list):
... # Just does something very simple.
... mailing_list.display_name = 'ANOTHER STYLE LIST'
>>> another_style = AnotherStyle()

We’ll set up the system default to apply this newly registered style if no
other style is explicitly given.

>>> from mailman.testing.helpers import configuration
>>> with configuration('styles', default=another_style.name):
... manager.register(another_style)
... mlist = create_list('cat@example.com')
>>> print(mlist.display_name)
ANOTHER STYLE LIST

Archivers

Mailman supports pluggable archivers, and it comes with several default
archivers.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: An archived message
... Message-ID: <12345>
... X-Message-ID-Hash: RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE
...
... Here is an archived message.
... """)

Archivers support an interface which provides the RFC 2369 List-Archive:
header, and one that provides a permalink to the specific message object in
the archive. This latter is appropriate for the message footer or for the RFC
5064 Archived-At: header.

If the archiver is not network-accessible, it will return None and the
headers will not be added.

Mailman defines a draft spec for how list servers and archivers can
interoperate.

>>> archivers = {}
>>> from operator import attrgetter
>>> for archiver in sorted(config.archivers, key=attrgetter('name')):
... print(archiver.name)
... print(' ', archiver.list_url(mlist))
... print(' ', archiver.permalink(mlist, msg))
... archivers[archiver.name] = archiver
mail-archive
 http://go.mail-archive.dev/test%40example.com
 http://go.mail-archive.dev/RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE
mhonarc
 http://lists.example.com/.../test@example.com
 http://lists.example.com/.../RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE
prototype
 None
 None

Sending the message to the archiver

The prototype archiver archives messages to a maildir.

>>> import os
>>> archivers['prototype'].archive_message(mlist, msg)
>>> archive_path = os.path.join(
... config.ARCHIVE_DIR, 'prototype', mlist.fqdn_listname, 'new')
>>> len(os.listdir(archive_path))
1

The Mail-Archive.com

The Mail Archive [http://www.mail-archive.com] is a public archiver that can be used to archive message
for free. Mailman comes with a plugin for this archiver; by enabling it
messages to public lists will get sent there automatically.

>>> archiver = archivers['mail-archive']
>>> print(archiver.list_url(mlist))
http://go.mail-archive.dev/test%40example.com
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE

To archive the message, the archiver actually mails the message to a special
address at The Mail Archive. The message gets no header or footer decoration.

>>> from mailman.interfaces.archiver import ArchivePolicy
>>> mlist.archive_policy = ArchivePolicy.public
>>> archiver.archive_message(mlist, msg)

>>> from mailman.runners.outgoing import OutgoingRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> outgoing = make_testable_runner(OutgoingRunner, 'out')
>>> outgoing.run()

>>> from operator import itemgetter
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> print(messages[0].as_string())
From: aperson@example.org
To: test@example.com
Subject: An archived message
Message-ID: <12345>
X-Message-ID-Hash: RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE
X-Peer: 127.0.0.1:...
X-MailFrom: test-bounces@example.com
X-RcptTo: archive@mail-archive.dev

Here is an archived message.

>>> smtpd.clear()

However, if the mailing list is not public, the message will never be archived
at this service.

>>> mlist.archive_policy = ArchivePolicy.private
>>> print(archiver.list_url(mlist))
None
>>> print(archiver.permalink(mlist, msg))
None
>>> archiver.archive_message(mlist, msg)
>>> list(smtpd.messages)
[]

Additionally, this archiver can handle malformed Message-IDs.

>>> from mailman.utilities.email import add_message_hash
>>> mlist.archive_policy = ArchivePolicy.public
>>> del msg['message-id']
>>> del msg['x-message-id-hash']
>>> msg['Message-ID'] = '12345>'
>>> add_message_hash(msg)
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/YJIGBYRWZFG5LZEBQ7NR25B5HBR2BVD6

>>> del msg['message-id']
>>> del msg['x-message-id-hash']
>>> msg['Message-ID'] = '<12345'
>>> add_message_hash(msg)
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/XUFFJNJ2P2WC4NDPQRZFDJMV24POP64B

>>> del msg['message-id']
>>> del msg['x-message-id-hash']
>>> msg['Message-ID'] = '12345'
>>> add_message_hash(msg)
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE

>>> del msg['message-id']
>>> del msg['x-message-id-hash']
>>> add_message_hash(msg)
>>> msg['Message-ID'] = ' 12345 '
>>> add_message_hash(msg)
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE

MHonArc

A MHonArc [http://www.mhonarc.org] archiver is also available.

>>> archiver = archivers['mhonarc']
>>> print(archiver.name)
mhonarc

Messages sent to a local MHonArc instance are added to its archive via a
subprocess call.

>>> from mailman.testing.helpers import LogFileMark
>>> mark = LogFileMark('mailman.archiver')
>>> archiver.archive_message(mlist, msg)
>>> print('LOG:', mark.readline())
LOG: ... /usr/bin/mhonarc
 -add
 -dbfile .../test@example.com.mbox/mhonarc.db
 -outdir .../mhonarc/test@example.com
 -stderr .../logs/mhonarc
 -stdout .../logs/mhonarc -spammode -umask 022

SMTP authentication

The SMTP server may require authentication. Mailman supports setting the SMTP
user name and password. The actual authentication mechanism used is
determined by Python’s smtplib module [http://docs.python.org/library/smtplib.html], which tries the more secure
CRAM-MD5 method first, followed by the less secure mechanisms PLAIN and
LOGIN.

When sending authentication data between Mailman and the MTA over an unsecured
network, the submission (mail) server should offer CRAM-MD5 as mechanism to
have Python’s smtplib module automatically choose the more secure mechanism.

When the user name and password match what’s expected by the server,
everything is a-okay.

>>> mlist = create_list('test@example.com')

By default there is no user name and password, but this matches what’s
expected by the test server.

>>> config.push('auth', """
... [mta]
... smtp_user: testuser
... smtp_pass: testpass
... """)

Attempting delivery first must authorize with the mail server.

>>> from mailman.mta.bulk import BulkDelivery
>>> bulk = BulkDelivery()

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... First post!
... """)

>>> bulk.deliver(mlist, msg, dict(recipients=['bperson@example.com']))
{}

>>> print(smtpd.get_authentication_credentials())
PLAIN AHRlc3R1c2VyAHRlc3RwYXNz
>>> config.pop('auth')

But if the user name and password does not match, the connection will fail.

>>> config.push('auth', """
... [mta]
... smtp_user: baduser
... smtp_pass: badpass
... """)

>>> bulk = BulkDelivery()
>>> response = bulk.deliver(
... mlist, msg, dict(recipients=['bperson@example.com']))
>>> dump_msgdata(response)
bperson@example.com: (571, b'Bad authentication')

>>> config.pop('auth')

Standard bulk delivery

Mailman has several built in strategies for completing the actual delivery of
messages to the immediate upstream mail transport agent, which completes the
actual final delivery to recipients.

Bulk delivery attempts to deliver as few copies of the identical message as
possible to as many recipients as possible. By grouping recipients this way,
bandwidth between Mailman and the MTA, and consequently between the MTA and
remote mail servers, can be greatly reduced. The downside is the messages
cannot be personalized. See verp.txt for an alternative strategy.

>>> from mailman.mta.bulk import BulkDelivery

The standard bulk deliverer takes as an argument the maximum number of
recipients per session. The default is to deliver the message in one chunk,
containing all recipients.

>>> bulk = BulkDelivery()

Delivery strategies must implement the proper interface.

>>> from mailman.interfaces.mta import IMailTransportAgentDelivery
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IMailTransportAgentDelivery, bulk)
True

Chunking recipients

The set of final recipients is contained in the recipients key in the
message metadata. When max_recipients is specified as zero, then the bulk
deliverer puts all recipients into one big chunk.

>>> from string import ascii_letters
>>> recipients = set(letter + 'person@example.com'
... for letter in ascii_letters)

>>> chunks = list(bulk.chunkify(recipients))
>>> len(chunks)
1
>>> len(chunks[0])
52

Let say the maximum number of recipients allowed is 4, then no chunk will have
more than 4 recipients, though they can have fewer (but still not zero).

>>> bulk = BulkDelivery(4)
>>> chunks = list(bulk.chunkify(recipients))
>>> len(chunks)
13
>>> all(0 < len(chunk) <= 4 for chunk in chunks)
True

The chunking algorithm sorts recipients by top level domain by length.

>>> recipients = set([
... 'anne@example.com',
... 'bart@example.org',
... 'cate@example.net',
... 'dave@example.com',
... 'elle@example.org',
... 'fred@example.net',
... 'gwen@example.com',
... 'herb@example.us',
... 'ione@example.net',
... 'john@example.com',
... 'kate@example.com',
... 'liam@example.ca',
... 'mary@example.us',
... 'neil@example.net',
... 'ocho@example.org',
... 'paco@example.xx',
... 'quaq@example.zz',
...])

>>> bulk = BulkDelivery(4)
>>> chunks = list(bulk.chunkify(recipients))
>>> len(chunks)
6

We can’t make any guarantees about sorting within each chunk, but we can tell
a few things. For example, the first two chunks will be composed of .net
(4) and .org (3) domains (for a total of 7).

>>> len(chunks[0])
4
>>> len(chunks[1])
3

>>> for address in sorted(chunks[0].union(chunks[1])):
... print(address)
bart@example.org
cate@example.net
elle@example.org
fred@example.net
ione@example.net
neil@example.net
ocho@example.org

We also know that the next two chunks will contain .com (5) addresses.

>>> len(chunks[2])
4
>>> len(chunks[3])
1

>>> for address in sorted(chunks[2].union(chunks[3])):
... print(address)
anne@example.com
dave@example.com
gwen@example.com
john@example.com
kate@example.com

The next chunk will contain the .us (2) and .ca (1) domains.

>>> len(chunks[4])
3
>>> for address in sorted(chunks[4]):
... print(address)
herb@example.us
liam@example.ca
mary@example.us

The final chunk will contain the outliers, .xx (1) and .zz (2).

>>> len(chunks[5])
2
>>> for address in sorted(chunks[5]):
... print(address)
paco@example.xx
quaq@example.zz

Bulk delivery

The set of recipients for bulk delivery comes from the message metadata. If
there are no calculated recipients, nothing gets sent.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test one
... Message-ID: <aardvark>
...
... This is a test.
... """)

>>> bulk = BulkDelivery()
>>> bulk.deliver(mlist, msg, {})
{}
>>> len(list(smtpd.messages))
0

>>> bulk.deliver(mlist, msg, dict(recipients=set()))
{}
>>> len(list(smtpd.messages))
0

With bulk delivery and no maximum number of recipients, there will be just one
message sent, with all the recipients packed into the envelope recipients
(i.e. RCTP TO).

>>> recipients = set('person_{0:02d}'.format(i) for i in range(100))
>>> msgdata = dict(recipients=recipients)
>>> bulk.deliver(mlist, msg, msgdata)
{}

>>> messages = list(smtpd.messages)
>>> len(messages)
1
>>> print(messages[0].as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
...
X-RcptTo: person_...
 person_...
...

This is a test.

The X-RcptTo: header contains the set of recipients, in sorted order.

>>> len(messages[0]['x-rcptto'].split(','))
100

When the maximum number of recipients is set to 20, 5 messages will be sent,
each with 20 addresses in the RCPT TO.

>>> bulk = BulkDelivery(20)
>>> bulk.deliver(mlist, msg, msgdata)
{}

>>> messages = list(smtpd.messages)
>>> len(messages)
5
>>> for message in messages:
... x_rcptto = message['x-rcptto']
... print('Number of recipients:', len(x_rcptto.split(',')))
Number of recipients: 20
Number of recipients: 20
Number of recipients: 20
Number of recipients: 20
Number of recipients: 20

Delivery headers

The sending agent shows up in the RFC 5321 MAIL FROM, which shows up in
the X-MailFrom: header in the sample message.

The bulk delivery module calculates the sending agent address first from the
message metadata…

>>> bulk = BulkDelivery()
>>> recipients = set(['aperson@example.com'])
>>> msgdata = dict(recipients=recipients,
... sender='asender@example.org')
>>> bulk.deliver(mlist, msg, msgdata)
{}

>>> message = list(smtpd.messages)[0]
>>> print(message.as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: asender@example.org
X-RcptTo: aperson@example.com

This is a test.

…followed by the mailing list’s bounces robot address…

>>> del msgdata['sender']
>>> bulk.deliver(mlist, msg, msgdata)
{}

>>> message = list(smtpd.messages)[0]
>>> print(message.as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

…and finally the site owner, if there is no mailing list target for this
message.

>>> config.push('site-owner', """\
... [mailman]
... site_owner: site-owner@example.com
... """)

>>> bulk.deliver(None, msg, msgdata)
{}

>>> message = list(smtpd.messages)[0]
>>> print(message.as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: site-owner@example.com
X-RcptTo: aperson@example.com

This is a test.

Remove test configuration.
>>> config.pop('site-owner')

Delivery failures

Mailman does not do final delivery. Instead, it sends mail through a site
local mail server which manages queuing and final delivery. However, even
this local mail server can produce delivery failures visible to Mailman in
certain situations.

For example, there could be a problem delivering to any of the specified
recipients.

Tell the mail server to fail on the next 3 RCPT TO commands, one for
each recipient in the following message.
>>> smtpd.err_queue.put(('rcpt', 500))
>>> smtpd.err_queue.put(('rcpt', 500))
>>> smtpd.err_queue.put(('rcpt', 500))

>>> recipients = set([
... 'aperson@example.org',
... 'bperson@example.org',
... 'cperson@example.org',
...])
>>> msgdata = dict(recipients=recipients)

>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test three
... Message-ID: <camel>
...
... This is a test.
... """)

>>> failures = bulk.deliver(mlist, msg, msgdata)
>>> for address in sorted(failures):
... print(address, failures[address][0],
... failures[address][1].decode('ascii'))
aperson@example.org 500 Error: SMTPRecipientsRefused
bperson@example.org 500 Error: SMTPRecipientsRefused
cperson@example.org 500 Error: SMTPRecipientsRefused

>>> messages = list(smtpd.messages)
>>> len(messages)
0

Or there could be some other problem causing an SMTP response failure.

Tell the mail server to register a temporary failure on the next MAIL
FROM command.
>>> smtpd.err_queue.put(('mail', 450))

>>> failures = bulk.deliver(mlist, msg, msgdata)
>>> for address in sorted(failures):
... print(address, failures[address][0],
... failures[address][1].decode('ascii'))
aperson@example.org 450 Error: SMTPResponseException
bperson@example.org 450 Error: SMTPResponseException
cperson@example.org 450 Error: SMTPResponseException

Tell the mail server to register a permanent failure on the next MAIL
FROM command.
>>> smtpd.err_queue.put(('mail', 500))

>>> failures = bulk.deliver(mlist, msg, msgdata)
>>> for address in sorted(failures):
... print(address, failures[address][0],
... failures[address][1].decode('ascii'))
aperson@example.org 500 Error: SMTPResponseException
bperson@example.org 500 Error: SMTPResponseException
cperson@example.org 500 Error: SMTPResponseException

XXX Untested: socket.error, IOError, smtplib.SMTPException.

MTA connections

Outgoing connections to the outgoing mail transport agent (MTA) are mitigated
through a Connection class, which can transparently manage multiple
sessions in a single connection.

>>> from mailman.mta.connection import Connection

The number of sessions per connections is specified when the Connection
object is created, as is the host and port number of the SMTP server. Zero
means there’s an unlimited number of sessions per connection.

>>> connection = Connection(
... config.mta.smtp_host, int(config.mta.smtp_port), 0)

At the start, there have been no connections to the server.

>>> smtpd.get_connection_count()
0

By sending a message to the server, a connection is opened.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
1

We can reset the connection count back to zero.

>>> from smtplib import SMTP
>>> def reset():
... smtpd = SMTP()
... smtpd.connect(config.mta.smtp_host, int(config.mta.smtp_port))
... smtpd.docmd('RSET')

>>> reset()
>>> smtpd.get_connection_count()
0

>>> connection.quit()

By providing an SMTP user name and password in the configuration file, Mailman
will authenticate with the mail server after each new connection.

>>> config.push('auth', """
... [mta]
... smtp_user: testuser
... smtp_pass: testpass
... """)

>>> connection = Connection(
... config.mta.smtp_host, int(config.mta.smtp_port), 0,
... config.mta.smtp_user, config.mta.smtp_pass)
>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}
>>> print(smtpd.get_authentication_credentials())
PLAIN AHRlc3R1c2VyAHRlc3RwYXNz

>>> reset()
>>> config.pop('auth')

Sessions per connection

Let’s say we specify a maximum number of sessions per connection of 2. When
the third message is sent, the connection is torn down and a new one is
created.

The connection count starts at zero.

>>> connection = Connection(
... config.mta.smtp_host, int(config.mta.smtp_port), 2)

>>> smtpd.get_connection_count()
0

We send two messages through the Connection object. Only one connection
is opened.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
1

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
1

The third message would cause a third session, exceeding the maximum. So the
current connection is closed and a new one opened.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
2

A fourth message does not cause a new connection to be made.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
2

But a fifth one does.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
3

No maximum

A value of zero means that there is an unlimited number of sessions per
connection.

>>> connection = Connection(
... config.mta.smtp_host, int(config.mta.smtp_port), 0)
>>> reset()

Even after ten messages are sent, there’s still been only one connection to
the server.

>>> connection.debug = True
>>> for i in range(10):
... # Ignore the results.
... results = connection.sendmail(
... 'anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)

>>> smtpd.get_connection_count()
1

Development mode

By putting Mailman into development mode, you can force the recipients to a
given hard-coded address. This allows you to test Mailman without worrying
about accidental deliveries to unintended recipients.

>>> config.push('devmode', """
... [devmode]
... enabled: yes
... recipient: zperson@example.com
... """)

>>> smtpd.clear()
>>> connection.sendmail(
... 'anne@example.com',
... ['bart@example.com', 'cate@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> messages = list(smtpd.messages)
>>> len(messages)
1
>>> print(messages[0].as_string())
From: anne@example.com
To: bart@example.com
Subject: aardvarks
X-Peer: ...
X-MailFrom: anne@example.com
X-RcptTo: zperson@example.com, zperson@example.com

>>> config.pop('devmode')

Personalized decoration

Personalized messages can be decorated by headers and footers containing
information specific to the recipient.

>>> from mailman.mta.decorating import DecoratingDelivery
>>> decorating = DecoratingDelivery()

Delivery strategies must implement the proper interface.

>>> from mailman.interfaces.mta import IMailTransportAgentDelivery
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IMailTransportAgentDelivery, decorating)
True

Decorations

Decorations are added when the mailing list had a header and/or footer
defined, and the decoration handler is told to do personalized decorations.
We start by writing the site-global header and footer template.

>>> import os, tempfile
>>> template_dir = tempfile.mkdtemp()
>>> site_dir = os.path.join(template_dir, 'site', 'en')
>>> os.makedirs(site_dir)
>>> config.push('templates', """
... [paths.testing]
... template_dir: {0}
... """.format(template_dir))

>>> myheader_path = os.path.join(site_dir, 'myheader.txt')
>>> with open(myheader_path, 'w') as fp:
... print("""\
... Delivery address: $user_address
... Subscribed address: $user_delivered_to
... """, file=fp)
>>> myfooter_path = os.path.join(site_dir, 'myfooter.txt')
>>> with open(myfooter_path, 'w') as fp:
... print("""\
... User name: $user_name
... Language: $user_language
... Options: $user_optionsurl
... """, file=fp)

Then create a mailing list which will use this header and footer. Because
these are site-global templates, we can use a shorted URL.

>>> mlist = create_list('test@example.com')
>>> mlist.header_uri = 'mailman:///myheader.txt'
>>> mlist.footer_uri = 'mailman:///myfooter.txt'

>>> transaction.commit()

>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test one
... Message-ID: <aardvark>
...
... This is a test.
... """)

>>> recipients = set([
... 'aperson@example.com',
... 'bperson@example.com',
... 'cperson@example.com',
...])

>>> msgdata = dict(
... recipients=recipients,
... personalize=True,
...)

More information is included when the recipient is a member of the mailing
list.

>>> from zope.component import getUtility
>>> from mailman.interfaces.member import MemberRole
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)

>>> anne = user_manager.create_user('aperson@example.com', 'Anne Person')
>>> mlist.subscribe(list(anne.addresses)[0], MemberRole.member)
<Member: Anne Person <aperson@example.com> ...

>>> bart = user_manager.create_user('bperson@example.com', 'Bart Person')
>>> mlist.subscribe(list(bart.addresses)[0], MemberRole.member)
<Member: Bart Person <bperson@example.com> ...

>>> cris = user_manager.create_user('cperson@example.com', 'Cris Person')
>>> mlist.subscribe(list(cris.addresses)[0], MemberRole.member)
<Member: Cris Person <cperson@example.com> ...

The decorations happen when the message is delivered.

>>> decorating.deliver(mlist, msg, msgdata)
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> from operator import itemgetter
>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

Delivery address: aperson@example.com
Subscribed address: aperson@example.com
This is a test.
User name: Anne Person
Language: English (USA)
Options: http://example.com/aperson@example.com

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

Delivery address: bperson@example.com
Subscribed address: bperson@example.com
This is a test.
User name: Bart Person
Language: English (USA)
Options: http://example.com/bperson@example.com

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

Delivery address: cperson@example.com
Subscribed address: cperson@example.com
This is a test.
User name: Cris Person
Language: English (USA)
Options: http://example.com/cperson@example.com

Decorate only once

Do not decorate a message twice. Decorators must insert the decorated key
into the message metadata.

>>> msgdata['nodecorate'] = True
>>> decorating.deliver(mlist, msg, msgdata)
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

This is a test.

Fully personalized delivery

Fully personalized mail delivery is an enhancement over VERP delivery where
the To: field of the message is replaced with the recipient’s address. A
typical email message is sent to the mailing list’s posting address and copied
to the list membership that way. Some people like the more personal address.

Personalized delivery still does VERP.

>>> from mailman.mta.personalized import PersonalizedDelivery
>>> personalized = PersonalizedDelivery()

Delivery strategies must implement the proper interface.

>>> from mailman.interfaces.mta import IMailTransportAgentDelivery
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IMailTransportAgentDelivery, personalized)
True

No personalization

By default, the To: header is not personalized.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test one
... Message-ID: <aardvark>
...
... This is a test.
... """)

>>> recipients = set([
... 'aperson@example.com',
... 'bperson@example.com',
... 'cperson@example.com',
...])

>>> personalized.deliver(mlist, msg, dict(recipients=recipients))
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> from operator import itemgetter
>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

This is a test.

To header

When the mailing list requests personalization, the To: header is replaced
with the recipient’s address and name.

>>> from mailman.interfaces.mailinglist import Personalization
>>> mlist.personalize = Personalization.full
>>> transaction.commit()

>>> personalized.deliver(mlist, msg, dict(recipients=recipients))
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> for message in sorted(messages, key=itemgetter('to')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: aperson@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: bperson@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: cperson@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

This is a test.

If the recipient is a user registered with Mailman, and the user has an
associated real name, then this name also shows up in the To: header.

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)

>>> bill = user_manager.create_user('bperson@example.com', 'Bill Person')
>>> cate = user_manager.create_user('cperson@example.com', 'Cate Person')
>>> transaction.commit()

>>> personalized.deliver(mlist, msg, dict(recipients=recipients))
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> from operator import itemgetter
>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: aperson@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: Bill Person <bperson@example.com>
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: Cate Person <cperson@example.com>
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

This is a test.

Standard VERP delivery

Variable Envelope Return Path (VERP [http://en.wikipedia.org/wiki/Variable_envelope_return_path]) delivery is an alternative to bulk
delivery, where an individual message is crafted uniquely for each recipient.

The cost of enabling VERP is that Mailman must send to the upstream MTA, one
message per recipient. Under bulk delivery, an exact copy of one message can
be sent to many recipients, greatly reducing the bandwidth for delivery.

In Mailman, enabling VERP delivery for bounce detection brings with it a side
benefit: the message which must be crafted uniquely for each recipient, can be
further personalized to include all kinds of information unique to that
recipient. In the simplest case, the message can contain footer information,
e.g. pointing the user to their account URL or including a user-specific
unsubscription link. In theory, VERP delivery means we can do sophisticated
mail merge [http://en.wikipedia.org/wiki/Mail_merge] operations.

Mailman’s use of the term VERP really means message personalization.

>>> from mailman.mta.verp import VERPDelivery
>>> verp = VERPDelivery()

Delivery strategies must implement the proper interface.

>>> from mailman.interfaces.mta import IMailTransportAgentDelivery
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IMailTransportAgentDelivery, verp)
True

No recipients

The message metadata specifies the set of recipients to send this message to.
If there are no recipients, there’s nothing to do.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test one
... Message-ID: <aardvark>
...
... This is a test.
... """)

>>> verp.deliver(mlist, msg, {})
{}
>>> len(list(smtpd.messages))
0

>>> verp.deliver(mlist, msg, dict(recipients=set()))
{}
>>> len(list(smtpd.messages))
0

Individual copy

Each recipient of the message gets an individual, personalized copy of the
message, with their email address encoded into the envelope sender. This is
so the return path will point back to Mailman but allow for decoding of the
intended recipient’s delivery address.

>>> recipients = set([
... 'aperson@example.com',
... 'bperson@example.com',
... 'cperson@example.com',
...])

VERPing is only actually done if the metadata requests it.

>>> msgdata = dict(recipients=recipients, verp=True)
>>> verp.deliver(mlist, msg, msgdata)
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> from operator import itemgetter
>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces+aperson=example.com@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces+bperson=example.com@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces+cperson=example.com@example.com
X-RcptTo: cperson@example.com

This is a test.

The deliverer made a copy of the original message, so it wasn’t changed.

>>> print(msg.as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
<BLANKLINE>
This is a test.
<BLANKLINE>

Mailman runner control

Mailman has a number of runner subprocesses which perform long-running tasks
such as listening on an LMTP port, processing REST API requests, or processing
messages in a queue directory. In normal operation, the mailman command
is used to start, stop and manage the runners. This is just a wrapper around
the real master watcher, which handles runner starting, stopping, exiting, and
log file reopening.

>>> from mailman.testing.helpers import TestableMaster

Start the master in a sub-thread.

>>> master = TestableMaster()
>>> master.start()

There should be a process id for every runner that claims to be startable.

>>> from lazr.config import as_boolean
>>> startable_runners = [conf for conf in config.runner_configs
... if as_boolean(conf.start)]
>>> len(list(master.runner_pids)) == len(startable_runners)
True

Now verify that all the runners are running.

>>> import os

This should produce no output.
>>> for pid in master.runner_pids:
... os.kill(pid, 0)

Stop the master process, which should also kill (and not restart) the child
runner processes.

>>> master.stop()

None of the children are running now.

>>> import errno
>>> for pid in master.runner_pids:
... try:
... os.kill(pid, 0)
... print('Process did not exit:', pid)
... except OSError as error:
... if error.errno == errno.ESRCH:
... # The child process exited.
... pass
... else:
... raise

Generating aliases

For some mail servers, Mailman must generate data files that are used to hook
Mailman up to the mail server. The details of this differ for each mail
server. Generally these files are automatically kept up-to-date when mailing
lists are created or removed, but you might occasionally need to manually
regenerate the file. The mailman aliases command does this.

>>> class FakeArgs:
... directory = None
>>> from mailman.commands.cli_aliases import Aliases
>>> command = Aliases()

For example, connecting Mailman to Postfix is generally done through the LMTP
protocol. Mailman starts an LMTP server and Postfix delivers messages to
Mailman as an LMTP client. By default this is done through Postfix transport
maps.

Selecting Postfix as the source of incoming messages enables transport map
generation.

>>> config.push('postfix', """
... [mta]
... incoming: mailman.mta.postfix.LMTP
... lmtp_host: lmtp.example.com
... lmtp_port: 24
... """)

Let’s create a mailing list and then display the transport map for it. We’ll
write the appropriate files to a temporary directory.

>>> import os, shutil, tempfile
>>> output_directory = tempfile.mkdtemp()
>>> cleanups.append((shutil.rmtree, output_directory))

>>> FakeArgs.directory = output_directory
>>> mlist = create_list('test@example.com')
>>> command.process(FakeArgs)

For Postfix, there are two files in the output directory.

>>> files = sorted(os.listdir(output_directory))
>>> for file in files:
... print(file)
postfix_domains
postfix_lmtp

The transport map file contains all the aliases for the mailing list.

>>> with open(os.path.join(output_directory, 'postfix_lmtp')) as fp:
... print(fp.read())
AUTOMATICALLY GENERATED BY MAILMAN ON ...
...
test@example.com lmtp:[lmtp.example.com]:24
test-bounces@example.com lmtp:[lmtp.example.com]:24
test-confirm@example.com lmtp:[lmtp.example.com]:24
test-join@example.com lmtp:[lmtp.example.com]:24
test-leave@example.com lmtp:[lmtp.example.com]:24
test-owner@example.com lmtp:[lmtp.example.com]:24
test-request@example.com lmtp:[lmtp.example.com]:24
test-subscribe@example.com lmtp:[lmtp.example.com]:24
test-unsubscribe@example.com lmtp:[lmtp.example.com]:24
<BLANKLINE>

The relay domains file contains a list of all the domains.

>>> with open(os.path.join(output_directory, 'postfix_domains')) as fp:
... print(fp.read())
AUTOMATICALLY GENERATED BY MAILMAN ON ...
...
example.com example.com

Display configuration values

Just like the Postfix command postconf(1) [http://www.postfix.org/postconf.1.html], the mailman conf command
lets you dump one or more Mailman configuration variables to standard output
or a file.

Mailman’s configuration is divided in multiple sections which contain multiple
key-value pairs. The mailman conf command allows you to display a
specific key-value pair, or several key-value pairs.

>>> class FakeArgs:
... key = None
... section = None
... output = None
>>> from mailman.commands.cli_conf import Conf
>>> command = Conf()

To get a list of all key-value pairs of any section, you need to call the
command without any options.

>>> command.process(FakeArgs)
[antispam] header_checks:
...
[logging.bounce] level: info
...
[mailman] site_owner: noreply@example.com
...

You can list all the key-value pairs of a specific section.

>>> FakeArgs.section = 'shell'
>>> command.process(FakeArgs)
[shell] banner: Welcome to the GNU Mailman shell
[shell] prompt: >>>
[shell] use_ipython: no

You can also pass a key and display all key-value pairs matching the given
key, along with the names of the corresponding sections.

>>> FakeArgs.section = None
>>> FakeArgs.key = 'path'
>>> command.process(FakeArgs)
[logging.archiver] path: mailman.log
[logging.bounce] path: bounce.log
[logging.config] path: mailman.log
[logging.database] path: mailman.log
[logging.debug] path: debug.log
[logging.error] path: mailman.log
[logging.fromusenet] path: mailman.log
[logging.http] path: mailman.log
[logging.locks] path: mailman.log
[logging.mischief] path: mailman.log
[logging.root] path: mailman.log
[logging.runner] path: mailman.log
[logging.smtp] path: smtp.log
[logging.subscribe] path: mailman.log
[logging.vette] path: mailman.log

If you specify both a section and a key, you will get the corresponding value.

>>> FakeArgs.section = 'mailman'
>>> FakeArgs.key = 'site_owner'
>>> command.process(FakeArgs)
noreply@example.com

Starting and stopping Mailman

The Mailman daemon processes can be started and stopped from the command
line.

Set up

All we care about is the master process; normally it starts a bunch of
runners, but we don’t care about any of them, so write a test configuration
file for the master that disables all the runners.

>>> from mailman.commands.tests.test_control import make_config

Starting

>>> from mailman.commands.cli_control import Start
>>> start = Start()

>>> class FakeArgs:
... force = False
... run_as_user = True
... quiet = False
... config = make_config()
>>> args = FakeArgs()

Starting the daemons prints a useful message and starts the master watcher
process in the background.

>>> start.process(args)
Starting Mailman's master runner

>>> from mailman.commands.tests.test_control import find_master

The process exists, and its pid is available in a run time file.

>>> pid = find_master()
>>> pid is not None
True

Stopping

You can also stop the master watcher process from the command line, which
stops all the child processes too.

>>> from mailman.commands.cli_control import Stop
>>> stop = Stop()
>>> stop.process(args)
Shutting down Mailman's master runner

>>> from datetime import datetime, timedelta
>>> import os
>>> import time
>>> import errno
>>> def bury_master():
... until = timedelta(seconds=2) + datetime.now()
... while datetime.now() < until:
... time.sleep(0.1)
... try:
... os.kill(pid, 0)
... os.waitpid(pid, os.WNOHANG)
... except OSError as error:
... if error.errno == errno.ESRCH:
... # The process has exited.
... print('Master process went bye bye')
... return
... else:
... raise
... else:
... raise AssertionError('Master process lingered')

>>> bury_master()
Master process went bye bye

XXX We need tests for restart (SIGUSR1) and reopen (SIGHUP).

Command line list creation

A system administrator can create mailing lists by the command line.

>>> class FakeArgs:
... language = None
... owners = []
... quiet = False
... domain = None
... listname = None
... notify = False

You cannot create a mailing list in an unknown domain.

>>> from mailman.commands.cli_lists import Create
>>> command = Create()

>>> class FakeParser:
... def error(self, message):
... print(message)
>>> command.parser = FakeParser()

>>> FakeArgs.listname = ['test@example.xx']
>>> command.process(FakeArgs)
Undefined domain: example.xx

The -d or --domain option is used to tell Mailman to auto-register the
domain. Both the mailing list and domain will be created.

>>> FakeArgs.domain = True
>>> command.process(FakeArgs)
Created mailing list: test@example.xx

Now both the domain and the mailing list exist in the database.

>>> from mailman.interfaces.listmanager import IListManager
>>> from zope.component import getUtility
>>> list_manager = getUtility(IListManager)
>>> list_manager.get('test@example.xx')
<mailing list "test@example.xx" at ...>

>>> from mailman.interfaces.domain import IDomainManager
>>> getUtility(IDomainManager).get('example.xx')
<Domain example.xx, base_url: http://example.xx>

You can also create mailing lists in existing domains without the
auto-creation flag.

>>> FakeArgs.domain = False
>>> FakeArgs.listname = ['test1@example.com']
>>> command.process(FakeArgs)
Created mailing list: test1@example.com

>>> list_manager.get('test1@example.com')
<mailing list "test1@example.com" at ...>

The command can also operate quietly.

>>> FakeArgs.quiet = True
>>> FakeArgs.listname = ['test2@example.com']
>>> command.process(FakeArgs)

>>> mlist = list_manager.get('test2@example.com')
>>> mlist
<mailing list "test2@example.com" at ...>

Setting the owner

By default, no list owners are specified.

>>> dump_list(mlist.owners.addresses)
Empty

But you can specify an owner address on the command line when you create the
mailing list.

>>> FakeArgs.quiet = False
>>> FakeArgs.listname = ['test4@example.com']
>>> FakeArgs.owners = ['foo@example.org']
>>> command.process(FakeArgs)
Created mailing list: test4@example.com

>>> mlist = list_manager.get('test4@example.com')
>>> dump_list(repr(address) for address in mlist.owners.addresses)
<Address: foo@example.org [not verified] at ...>

You can even specify more than one address for the owners.

>>> FakeArgs.owners = ['foo@example.net',
... 'bar@example.net',
... 'baz@example.net']
>>> FakeArgs.listname = ['test5@example.com']
>>> command.process(FakeArgs)
Created mailing list: test5@example.com

>>> mlist = list_manager.get('test5@example.com')
>>> from operator import attrgetter
>>> dump_list(repr(address) for address in mlist.owners.addresses)
<Address: bar@example.net [not verified] at ...>
<Address: baz@example.net [not verified] at ...>
<Address: foo@example.net [not verified] at ...>

Setting the language

You can set the default language for the new mailing list when you create it.
The language must be known to Mailman.

>>> FakeArgs.listname = ['test3@example.com']
>>> FakeArgs.language = 'ee'
>>> command.process(FakeArgs)
Invalid language code: ee

>>> from mailman.interfaces.languages import ILanguageManager
>>> getUtility(ILanguageManager).add('ee', 'iso-8859-1', 'Freedonian')
<Language [ee] Freedonian>

>>> FakeArgs.quiet = False
>>> FakeArgs.listname = ['test3@example.com']
>>> FakeArgs.language = 'fr'
>>> command.process(FakeArgs)
Created mailing list: test3@example.com

>>> mlist = list_manager.get('test3@example.com')
>>> print(mlist.preferred_language)
<Language [fr] French>
>>> FakeArgs.language = None

Notifications

When told to, Mailman will notify the list owners of their new mailing list.

>>> FakeArgs.listname = ['test6@example.com']
>>> FakeArgs.notify = True
>>> command.process(FakeArgs)
Created mailing list: test6@example.com

The notification message is in the virgin queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> for message in messages:
... print(message.msg.as_string())
MIME-Version: 1.0
...
Subject: Your new mailing list: test6@example.com
From: noreply@example.com
To: foo@example.net, bar@example.net, baz@example.net
...

The mailing list 'test6@example.com' has just been created for you.
The following is some basic information about your mailing list.

You can configure your mailing list at the following web page:

 http://lists.example.com/admin/test6@example.com

The web page for users of your mailing list is:

 http://lists.example.com/listinfo/test6@example.com

There is also an email-based interface for users (not administrators)
of your list; you can get info about using it by sending a message
with just the word 'help' as subject or in the body, to:

 test6-request@example.com

Please address all questions to noreply@example.com.

The ‘echo’ command

The mail command ‘echo’ simply replies with the original command and arguments
to the sender.

>>> command = config.commands['echo']
>>> print(command.name)
echo
>>> print(command.argument_description)
[args]
>>> print(command.description)
Echo back your arguments.

The original message is ignored, but the results receive the echoed command.

>>> mlist = create_list('test@example.com')

>>> from mailman.runners.command import Results
>>> results = Results()

>>> from mailman.email.message import Message
>>> print(command.process(mlist, Message(), {}, ('foo', 'bar'), results))
ContinueProcessing.yes
>>> print(str(results))
The results of your email command are provided below.

echo foo bar

The ‘end’ command

The mail command processor recognized an ‘end’ command which tells it to stop
processing email messages.

>>> command = config.commands['end']
>>> print(command.name)
end
>>> print(command.description)
Stop processing commands.

The ‘end’ command takes no arguments.

>>> print('DESCRIPTION:', command.argument_description)
DESCRIPTION:

The command itself is fairly simple; it just stops command processing, and the
message isn’t even looked at.

>>> mlist = create_list('test@example.com')
>>> from mailman.email.message import Message
>>> print(command.process(mlist, Message(), {}, (), None))
ContinueProcessing.no

The ‘stop’ command is a synonym for ‘end’.

>>> command = config.commands['stop']
>>> print(command.name)
stop
>>> print(command.description)
An alias for 'end'.
>>> print('DESCRIPTION:', command.argument_description)
DESCRIPTION:
>>> print(command.process(mlist, Message(), {}, (), None))
ContinueProcessing.no

Email command help

You can get some help about the various email commands that are available by
sending the word help to a mailing list’s -request address.

>>> mlist = create_list('test@example.com')
>>> from mailman.commands.eml_help import Help
>>> help = Help()
>>> print(help.name)
help
>>> print(help.description)
Get help about available email commands.
>>> print(help.argument_description)
[command]

With no arguments, help provides a list of the available commands and a
short description of each of them.

>>> from mailman.runners.command import Results
>>> results = Results()

>>> from mailman.email.message import Message
>>> print(help.process(mlist, Message(), {}, (), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.

confirm - Confirm a subscription request.
echo - Echo back your arguments.
end - Stop processing commands.
help - Get help about available email commands.
join - Join this mailing list.
leave - Leave this mailing list.
stop - An alias for 'end'.
subscribe - An alias for 'join'.
unsubscribe - An alias for 'leave'.

With an argument, you can get more detailed help about a specific command.

>>> results = Results()
>>> print(help.process(mlist, Message(), {}, ('help',), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
help [command]
Get help about available email commands.
<BLANKLINE>

Some commands have even more detailed help.

>>> results = Results()
>>> print(help.process(mlist, Message(), {}, ('join',), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
join [digest=<no|mime|plain>]
Join this mailing list.
<BLANKLINE>
You will be asked to confirm your subscription request and you may be
issued a provisional password.
<BLANKLINE>
By using the 'digest' option, you can specify whether you want digest
delivery or not. If not specified, the mailing list's default delivery
mode will be used.
<BLANKLINE>

Importing list data

If you have the config.pck file for a version 2.1 mailing list, you can import
that into an existing mailing list in Mailman 3.0.

>>> from mailman.commands.cli_import import Import21
>>> command = Import21()

>>> class FakeArgs:
... listname = None
... pickle_file = None

>>> class FakeParser:
... def error(self, message):
... print(message)
>>> command.parser = FakeParser()

You must specify the mailing list you are importing into, and it must exist.

>>> command.process(FakeArgs)
List name is required

>>> FakeArgs.listname = ['import@example.com']
>>> command.process(FakeArgs)
No such list: import@example.com

When the mailing list exists, you must specify a real pickle file to import
from.

>>> mlist = create_list('import@example.com')
>>> command.process(FakeArgs)
config.pck file is required

>>> FakeArgs.pickle_file = [__file__]
>>> command.process(FakeArgs)
Not a Mailman 2.1 configuration file: .../import.rst

Now we can import the test pickle file. As a simple illustration of the
import, the mailing list’s ‘real name’ has changed.

>>> from pkg_resources import resource_filename
>>> FakeArgs.pickle_file = [
... resource_filename('mailman.testing', 'config.pck')]

>>> print(mlist.display_name)
Import

>>> command.process(FakeArgs)
>>> print(mlist.display_name)
Test

Getting information

You can get information about Mailman’s environment by using the command line
script mailman info. By default, the info is printed to standard output.

>>> from mailman.commands.cli_info import Info
>>> command = Info()

>>> class FakeArgs:
... output = None
... verbose = None
>>> args = FakeArgs()

>>> command.process(args)
GNU Mailman 3...
Python ...
...
config file: .../test.cfg
db url: ...
REST root url: http://localhost:9001/3.0/
REST credentials: restadmin:restpass

By passing in the -o/--output option, you can print the info to a file.

>>> from mailman.config import config
>>> import os
>>> output_path = os.path.join(config.VAR_DIR, 'output.txt')
>>> args.output = output_path
>>> command.process(args)
>>> with open(output_path) as fp:
... print(fp.read())
GNU Mailman 3...
Python ...
...
config file: .../test.cfg
db url: ...
devmode: DISABLED
REST root url: http://localhost:9001/3.0/
REST credentials: restadmin:restpass

You can also get more verbose information, which contains a list of the file
system paths that Mailman is using.

>>> args.output = None
>>> args.verbose = True
>>> config.create_paths = False
>>> config.push('fhs', """
... [mailman]
... layout: fhs
... """)
>>> cleanups.append((config.pop, 'fhs'))
>>> config.create_paths = True

The Filesystem Hierarchy Standard [http://www.pathname.com/fhs/] layout is the same everywhere by
definition.

>>> command.process(args)
GNU Mailman 3...
Python ...
...
File system paths:
 ARCHIVE_DIR = /var/lib/mailman/archives
 BIN_DIR = /sbin
 CFG_FILE = .../test.cfg
 DATA_DIR = /var/lib/mailman/data
 ETC_DIR = /etc
 EXT_DIR = /etc/mailman.d
 LIST_DATA_DIR = /var/lib/mailman/lists
 LOCK_DIR = /var/lock/mailman
 LOCK_FILE = /var/lock/mailman/master.lck
 LOG_DIR = /var/log/mailman
 MESSAGES_DIR = /var/lib/mailman/messages
 PID_FILE = /var/run/mailman/master.pid
 QUEUE_DIR = /var/spool/mailman
 TEMPLATE_DIR = .../mailman/templates
 VAR_DIR = /var/lib/mailman

Command line message injection

You can inject a message directly into a queue directory via the command
line.

>>> from mailman.commands.cli_inject import Inject
>>> command = Inject()

>>> class FakeArgs:
... queue = None
... show = False
... filename = None
... listname = None
... keywords = []
>>> args = FakeArgs()

>>> class FakeParser:
... def error(self, message):
... print(message)
>>> command.parser = FakeParser()

It’s easy to find out which queues are available.

>>> args.show = True
>>> command.process(args)
Available queues:
 archive
 bad
 bounces
 command
 digest
 in
 nntp
 out
 pipeline
 retry
 shunt
 virgin

>>> args.show = False

Usually, the text of the message to inject is in a file.

>>> import os, tempfile
>>> fd, filename = tempfile.mkstemp()
>>> with os.fdopen(fd, 'w') as fp:
... print("""\
... From: aperson@example.com
... To: test@example.com
... Subject: testing
... Message-ID: <aardvark>
...
... This is a test message.
... """, file=fp)

However, the mailing list name is always required.

>>> args.filename = filename
>>> command.process(args)
List name is required

Let’s provide a list name and try again.

>>> mlist = create_list('test@example.com')
>>> transaction.commit()
>>> from mailman.testing.helpers import get_queue_messages

>>> get_queue_messages('in')
[]
>>> args.listname = ['test@example.com']
>>> command.process(args)

By default, the incoming queue is used.

>>> items = get_queue_messages('in')
>>> len(items)
1
>>> print(items[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: testing
Message-ID: ...
Date: ...

This is a test message.

>>> dump_msgdata(items[0].msgdata)
_parsemsg : False
listid : test.example.com
original_size: 203
version : 3

But a different queue can be specified on the command line.

>>> args.queue = 'virgin'
>>> command.process(args)

>>> get_queue_messages('in')
[]
>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> print(items[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: testing
Message-ID: ...
Date: ...

This is a test message.

>>> dump_msgdata(items[0].msgdata)
_parsemsg : False
listid : test.example.com
original_size: 203
version : 3

Standard input

The message text can also be provided on standard input.

>>> from io import StringIO

>>> standard_in = StringIO(str("""\
... From: bperson@example.com
... To: test@example.com
... Subject: another test
... Message-ID: <badger>
...
... This is another test message.
... """))

>>> import sys
>>> sys.stdin = standard_in
>>> args.filename = '-'
>>> args.queue = None

>>> command.process(args)
>>> items = get_queue_messages('in')
>>> len(items)
1
>>> print(items[0].msg.as_string())
From: bperson@example.com
To: test@example.com
Subject: another test
Message-ID: ...
Date: ...

This is another test message.

>>> dump_msgdata(items[0].msgdata)
_parsemsg : False
listid : test.example.com
original_size: 211
version : 3

Metadata

Additional metadata keys can be provided on the command line. These key/value
pairs get added to the message metadata dictionary when the message is
injected.

>>> args = FakeArgs()
>>> args.filename = filename
>>> args.listname = ['test@example.com']
>>> args.keywords = ['foo=one', 'bar=two']
>>> command.process(args)

>>> items = get_queue_messages('in')
>>> dump_msgdata(items[0].msgdata)
_parsemsg : False
bar : two
foo : one
listid : test.example.com
original_size: 203
version : 3

Errors

It is an error to specify a queue that doesn’t exist.

>>> args.queue = 'xxbogusxx'
>>> command.process(args)
No such queue: xxbogusxx

It is also an error to specify a mailing list that doesn’t exist.

>>> args.queue = None
>>> args.listname = ['bogus']
>>> command.process(args)
No such list: bogus

Command line list display

A system administrator can display all the mailing lists via the command
line. When there are no mailing lists, a helpful message is displayed.

>>> class FakeArgs:
... advertised = False
... names = False
... descriptions = False
... quiet = False
... domains = None

>>> from mailman.commands.cli_lists import Lists
>>> command = Lists()
>>> command.process(FakeArgs)
No matching mailing lists found

When there are a few mailing lists, they are shown in alphabetical order by
their fully qualified list names, with a description.

>>> from mailman.interfaces.domain import IDomainManager
>>> from zope.component import getUtility
>>> getUtility(IDomainManager).add('example.net')
<Domain example.net...>

>>> mlist_1 = create_list('list-one@example.com')
>>> mlist_1.description = 'List One'

>>> mlist_2 = create_list('list-two@example.com')
>>> mlist_2.description = 'List Two'

>>> mlist_3 = create_list('list-one@example.net')
>>> mlist_3.description = 'List One in Example.Net'

>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com
list-one@example.net
list-two@example.com

Names

You can display the mailing list names with their posting addresses, using the
--names/-n switch.

>>> FakeArgs.names = True
>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com [List-one]
list-one@example.net [List-one]
list-two@example.com [List-two]

Descriptions

You can also display the mailing list descriptions, using the
--descriptions/-d option.

>>> FakeArgs.descriptions = True
>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com [List-one] - List One
list-one@example.net [List-one] - List One in Example.Net
list-two@example.com [List-two] - List Two

Maybe you want the descriptions but not the names.

>>> FakeArgs.names = False
>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com - List One
list-one@example.net - List One in Example.Net
list-two@example.com - List Two

Less verbosity

There’s also a --quiet/-q switch which reduces the verbosity a bit.

>>> FakeArgs.quiet = True
>>> FakeArgs.descriptions = False
>>> command.process(FakeArgs)
list-one@example.com
list-one@example.net
list-two@example.com

Specific domain

You can narrow the search down to a specific domain with the –domain option.
A helpful message is displayed if no matching domains are given.

>>> FakeArgs.quiet = False
>>> FakeArgs.domain = ['example.org']
>>> command.process(FakeArgs)
No matching mailing lists found

But if a matching domain is given, only mailing lists in that domain are
shown.

>>> FakeArgs.domain = ['example.net']
>>> command.process(FakeArgs)
1 matching mailing lists found:
list-one@example.net

More than one –domain argument can be given; then all mailing lists in
matching domains are shown.

>>> FakeArgs.domain = ['example.com', 'example.net']
>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com
list-one@example.net
list-two@example.com

Advertised lists

Mailing lists can be ‘advertised’ meaning their existence is public
knowledge. Non-advertised lists are considered private. Display through the
command line can select on this attribute.

>>> FakeArgs.domain = []
>>> FakeArgs.advertised = True
>>> mlist_1.advertised = False

>>> command.process(FakeArgs)
2 matching mailing lists found:
list-one@example.net
list-two@example.com

Managing members

The mailman members command allows a site administrator to display, add,
and remove members from a mailing list.

>>> mlist1 = create_list('test1@example.com')

>>> class FakeArgs:
... input_filename = None
... output_filename = None
... listname = []
... regular = False
... digest = None
... nomail = None
>>> args = FakeArgs()

>>> from mailman.commands.cli_members import Members
>>> command = Members()

Listing members

You can list all the members of a mailing list by calling the command with no
options. To start with, there are no members of the mailing list.

>>> args.listname = [mlist1.fqdn_listname]
>>> command.process(args)
test1@example.com has no members

Once the mailing list add some members, they will be displayed.

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist1, 'Anne', email='anne@example.com')
<Member: Anne Person <anne@example.com> on test1@example.com
 as MemberRole.member>
>>> subscribe(mlist1, 'Bart', email='bart@example.com')
<Member: Bart Person <bart@example.com> on test1@example.com
 as MemberRole.member>
>>> command.process(args)
Anne Person <anne@example.com>
Bart Person <bart@example.com>

Members are displayed in alphabetical order based on their address.

>>> subscribe(mlist1, 'Anne', email='anne@aaaxample.com')
<Member: Anne Person <anne@aaaxample.com> on test1@example.com
 as MemberRole.member>
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Anne Person <anne@example.com>
Bart Person <bart@example.com>

You can also output this list to a file.

>>> from tempfile import mkstemp
>>> fd, args.output_filename = mkstemp()
>>> import os
>>> os.close(fd)
>>> command.process(args)
>>> with open(args.output_filename) as fp:
... print(fp.read())
Anne Person <anne@aaaxample.com>
Anne Person <anne@example.com>
Bart Person <bart@example.com>
>>> os.remove(args.output_filename)
>>> args.output_filename = None

The output file can also be standard out.

>>> args.output_filename = '-'
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Anne Person <anne@example.com>
Bart Person <bart@example.com>
>>> args.output_filename = None

Filtering on delivery mode

You can limit output to just the regular non-digest members…

>>> from mailman.interfaces.member import DeliveryMode
>>> args.regular = True
>>> member = mlist1.members.get_member('anne@example.com')
>>> member.preferences.delivery_mode = DeliveryMode.plaintext_digests
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Bart Person <bart@example.com>

…or just the digest members. Furthermore, you can either display all digest
members…

>>> member = mlist1.members.get_member('anne@aaaxample.com')
>>> member.preferences.delivery_mode = DeliveryMode.mime_digests
>>> args.regular = False
>>> args.digest = 'any'
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Anne Person <anne@example.com>

…just plain text digest members…

>>> args.digest = 'plaintext'
>>> command.process(args)
Anne Person <anne@example.com>

…just MIME digest members.

>>> args.digest = 'mime'
>>> command.process(args)
Anne Person <anne@aaaxample.com>

Reset for following tests.
>>> args.digest = None

Filtering on delivery status

You can also filter the display on the member’s delivery status. By default,
all members are displayed, but you can filter out only those whose delivery
status is enabled…

>>> from mailman.interfaces.member import DeliveryStatus

>>> member = mlist1.members.get_member('anne@aaaxample.com')
>>> member.preferences.delivery_status = DeliveryStatus.by_moderator
>>> member = mlist1.members.get_member('bart@example.com')
>>> member.preferences.delivery_status = DeliveryStatus.by_user

>>> member = subscribe(mlist1, 'Cris', email='cris@example.com')
>>> member.preferences.delivery_status = DeliveryStatus.unknown
>>> member = subscribe(mlist1, 'Dave', email='dave@example.com')
>>> member.preferences.delivery_status = DeliveryStatus.enabled
>>> member = subscribe(mlist1, 'Elle', email='elle@example.com')
>>> member.preferences.delivery_status = DeliveryStatus.by_bounces

>>> args.nomail = 'enabled'
>>> command.process(args)
Anne Person <anne@example.com>
Dave Person <dave@example.com>

…or disabled by the user…

>>> args.nomail = 'byuser'
>>> command.process(args)
Bart Person <bart@example.com>

…or disabled by the list administrator (or moderator)…

>>> args.nomail = 'byadmin'
>>> command.process(args)
Anne Person <anne@aaaxample.com>

…or by the bounce processor…

>>> args.nomail = 'bybounces'
>>> command.process(args)
Elle Person <elle@example.com>

…or for unknown (legacy) reasons.

>>> args.nomail = 'unknown'
>>> command.process(args)
Cris Person <cris@example.com>

You can also display all members who have delivery disabled for any reason.

>>> args.nomail = 'any'
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Bart Person <bart@example.com>
Cris Person <cris@example.com>
Elle Person <elle@example.com>

Reset for following tests.
>>> args.nomail = None

Adding members

You can add members to a mailing list from the command line. To do so, you
need a file containing email addresses and full names that can be parsed by
email.utils.parseaddr().

>>> mlist2 = create_list('test2@example.com')

>>> import os
>>> path = os.path.join(config.VAR_DIR, 'addresses.txt')
>>> with open(path, 'w') as fp:
... for address in ('aperson@example.com',
... 'Bart Person <bperson@example.com>',
... 'cperson@example.com (Cate Person)',
...):
... print(address, file=fp)

>>> args.input_filename = path
>>> args.listname = [mlist2.fqdn_listname]
>>> command.process(args)

>>> from operator import attrgetter
>>> dump_list(mlist2.members.addresses, key=attrgetter('email'))
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>

You can also specify - as the filename, in which case the addresses are
taken from standard input.

>>> from io import StringIO
>>> fp = StringIO()
>>> for address in ('dperson@example.com',
... 'Elly Person <eperson@example.com>',
... 'fperson@example.com (Fred Person)',
...):
... print(address, file=fp)
>>> filepos = fp.seek(0)
>>> import sys
>>> sys.stdin = fp

>>> args.input_filename = '-'
>>> command.process(args)
>>> sys.stdin = sys.__stdin__

>>> dump_list(mlist2.members.addresses, key=attrgetter('email'))
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>
dperson@example.com
Elly Person <eperson@example.com>
Fred Person <fperson@example.com>

Blank lines and lines that begin with ‘#’ are ignored.

>>> with open(path, 'w') as fp:
... for address in ('gperson@example.com',
... '# hperson@example.com',
... ' ',
... '',
... 'iperson@example.com',
...):
... print(address, file=fp)

>>> args.input_filename = path
>>> command.process(args)
>>> dump_list(mlist2.members.addresses, key=attrgetter('email'))
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>
dperson@example.com
Elly Person <eperson@example.com>
Fred Person <fperson@example.com>
gperson@example.com
iperson@example.com

Addresses which are already subscribed are ignored, although a warning is
printed.

>>> with open(path, 'w') as fp:
... for address in ('gperson@example.com',
... 'aperson@example.com',
... 'jperson@example.com',
...):
... print(address, file=fp)

>>> command.process(args)
Already subscribed (skipping): gperson@example.com
Already subscribed (skipping): aperson@example.com

>>> dump_list(mlist2.members.addresses, key=attrgetter('email'))
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>
dperson@example.com
Elly Person <eperson@example.com>
Fred Person <fperson@example.com>
gperson@example.com
iperson@example.com
jperson@example.com

Displaying members

With no arguments, the command displays all members of the list.

>>> args.input_filename = None
>>> command.process(args)
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>
dperson@example.com
Elly Person <eperson@example.com>
Fred Person <fperson@example.com>
gperson@example.com
iperson@example.com
jperson@example.com

Membership changes via email

Membership changes such as joining and leaving a mailing list, can be effected
via the email interface. The Mailman email commands join, leave, and
confirm are used.

Joining a mailing list

The mail command join subscribes an email address to the mailing list.
subscribe is an alias for join.

>>> from mailman.commands.eml_membership import Join
>>> from mailman.utilities.string import wrap
>>> join = Join()
>>> print(join.name)
join
>>> print(wrap(join.description))
You will be asked to confirm your subscription request and you may be
issued a provisional password.
<BLANKLINE>
By using the 'digest' option, you can specify whether you want digest
delivery or not. If not specified, the mailing list's default
delivery mode will be used.
>>> print(join.argument_description)
[digest=<no|mime|plain>]

No address to join

>>> mlist = create_list('alpha@example.com')
>>> mlist.send_welcome_message = False

When no address argument is given, the message’s From address will be used.
If that’s missing though, then an error is returned.

>>> from mailman.runners.command import Results
>>> results = Results()

>>> from mailman.email.message import Message
>>> print(join.process(mlist, Message(), {}, (), results))
ContinueProcessing.no
>>> print(results)
The results of your email command are provided below.

join: No valid address found to subscribe

The subscribe command is an alias.

>>> from mailman.commands.eml_membership import Subscribe
>>> subscribe = Subscribe()
>>> print(subscribe.name)
subscribe
>>> results = Results()
>>> print(subscribe.process(mlist, Message(), {}, (), results))
ContinueProcessing.no
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
subscribe: No valid address found to subscribe
<BLANKLINE>

Joining the sender

When the message has a From field, that address will be subscribed.

>>> msg = message_from_string("""\
... From: Anne Person <anne@example.com>
...
... """)
>>> results = Results()
>>> print(join.process(mlist, msg, {}, (), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
Confirmation email sent to Anne Person <anne@example.com>
<BLANKLINE>

Anne is not yet a member of the mailing list because she must confirm her
subscription request first.

>>> print(mlist.members.get_member('anne@example.com'))
None

Mailman has sent her the confirmation message.

>>> from mailman.testing.helpers import get_queue_messages
>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> print(items[0].msg.as_string())
MIME-Version: 1.0
...
Subject: confirm ...
From: alpha-confirm+...@example.com
To: anne@example.com
...
<BLANKLINE>
Email Address Registration Confirmation
<BLANKLINE>
Hello, this is the GNU Mailman server at example.com.
<BLANKLINE>
We have received a registration request for the email address
<BLANKLINE>
 anne@example.com
<BLANKLINE>
Before you can start using GNU Mailman at this site, you must first
confirm that this is your email address. You can do this by replying to
this message, keeping the Subject header intact.
<BLANKLINE>
If you do not wish to register this email address simply disregard this
message. If you think you are being maliciously subscribed to the list, or
have any other questions, you may contact
<BLANKLINE>
 alpha-owner@example.com
<BLANKLINE>

Anne confirms her registration.

>>> def extract_token(message):
... return str(message['subject']).split()[1].strip()
>>> token = extract_token(items[0].msg)

>>> from mailman.commands.eml_confirm import Confirm
>>> confirm = Confirm()
>>> msg = message_from_string("""\
... To: alpha-confirm+{token}@example.com
... From: anne@example.com
... Subject: Re: confirm {token}
...
... """.format(token=token))

>>> results = Results()
>>> print(confirm.process(mlist, msg, {}, (token,), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.

Confirmed

Anne is now a member of the mailing list.

>>> mlist.members.get_member('anne@example.com')
<Member: Anne Person <anne@example.com>
 on alpha@example.com as MemberRole.member>

Joining a second list

>>> mlist_2 = create_list('baker@example.com')
>>> msg = message_from_string("""\
... From: Anne Person <anne@example.com>
...
... """)
>>> print(join.process(mlist_2, msg, {}, (), Results()))
ContinueProcessing.yes

Anne is not a member of the mailing list.

>>> print(mlist_2.members.get_member('anne@example.com'))
None

One Anne confirms this subscription, she becomes a member of the mailing
list.

>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> token = extract_token(items[0].msg)
>>> msg = message_from_string("""\
... To: baker-confirm+{token}@example.com
... From: anne@example.com
... Subject: Re: confirm {token}
...
... """.format(token=token))

>>> results = Results()
>>> print(confirm.process(mlist_2, msg, {}, (token,), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.

Confirmed

>>> print(mlist_2.members.get_member('anne@example.com'))
<Member: Anne Person <anne@example.com>
 on baker@example.com as MemberRole.member>

Leaving a mailing list

The mail command leave unsubscribes an email address from the mailing
list. unsubscribe is an alias for leave.

>>> from mailman.commands.eml_membership import Leave
>>> leave = Leave()
>>> print(leave.name)
leave
>>> print(leave.description)
Leave this mailing list.
<BLANKLINE>
You may be asked to confirm your request.

Anne is a member of the baker@example.com mailing list, when she decides
to leave it. She sends a message to the -leave address for the list and
is sent a confirmation message for her request.

>>> results = Results()
>>> print(leave.process(mlist_2, msg, {}, (), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
Anne Person <anne@example.com> left baker@example.com
<BLANKLINE>

Anne is no longer a member of the mailing list.

>>> print(mlist_2.members.get_member('anne@example.com'))
None

Anne does not need to leave a mailing list with the same email address she’s
subscribe with. Any of her registered, linked, and validated email addresses
will do.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> anne = getUtility(IUserManager).get_user('anne@example.com')
>>> address = anne.register('anne.person@example.org')

>>> results = Results()
>>> print(mlist.members.get_member('anne@example.com'))
<Member: Anne Person <anne@example.com>
 on alpha@example.com as MemberRole.member>

>>> msg = message_from_string("""\
... To: alpha-leave@example.com
... From: anne.person@example.org
...
... """)

Since Anne’s alternative address has not yet been verified, it can’t be used
to unsubscribe Anne from the alpha mailing list.

>>> print(leave.process(mlist, msg, {}, (), results))
ContinueProcessing.no

>>> print(results)
The results of your email command are provided below.

Invalid or unverified email address: anne.person@example.org

>>> print(mlist.members.get_member('anne@example.com'))
<Member: Anne Person <anne@example.com>
 on alpha@example.com as MemberRole.member>

Once Anne has verified her alternative address though, it can be used to
unsubscribe her from the list.

>>> from mailman.utilities.datetime import now
>>> address.verified_on = now()

>>> results = Results()
>>> print(leave.process(mlist, msg, {}, (), results))
ContinueProcessing.yes

>>> print(results)
The results of your email command are provided below.

Anne Person <anne.person@example.org> left alpha@example.com

>>> print(mlist.members.get_member('anne@example.com'))
None

Confirmations

Bart wants to join the alpha list, so he sends his subscription request.

>>> msg = message_from_string("""\
... From: Bart Person <bart@example.com>
...
... """)

>>> print(join.process(mlist, msg, {}, (), Results()))
ContinueProcessing.yes

There are two messages in the virgin queue, one of which is the confirmation
message.

>>> for item in get_queue_messages('virgin'):
... if str(item.msg['subject']).startswith('confirm'):
... break
... else:
... raise AssertionError('No confirmation message')
>>> token = extract_token(item.msg)

Bart replies to the original message, specifically keeping the Subject header
intact except for any prefix. Mailman matches the token and confirms Bart as
a user of the system.

>>> msg = message_from_string("""\
... From: Bart Person <bart@example.com>
... To: alpha-confirm+{token}@example.com
... Subject: Re: confirm {token}
...
... """.format(token=token))

>>> results = Results()
>>> print(confirm.process(mlist, msg, {}, (token,), results))
ContinueProcessing.yes

>>> print(results)
The results of your email command are provided below.

Confirmed

Now Bart is now a member of the mailing list.

>>> print(mlist.members.get_member('bart@example.com'))
<Member: Bart Person <bart@example.com>
 on alpha@example.com as MemberRole.member>

Dumping queue files

The qfile command dumps the contents of a queue pickle file. This is
especially useful when you have shunt files you want to inspect.

XXX Test the interactive operation of qfile

Pretty printing

By default, the qfile command pretty prints the contents of a queue pickle
file to standard output.

>>> from mailman.commands.cli_qfile import QFile
>>> command = QFile()

>>> class FakeArgs:
... interactive = False
... doprint = True
... qfile = []

Let’s say Mailman shunted a message file.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: Uh oh
...
... I borkeded Mailman.
... """)

>>> shuntq = config.switchboards['shunt']
>>> basename = shuntq.enqueue(msg, foo=7, bar='baz', bad='yes')

Once we’ve figured out the file name of the shunted message, we can print it.

>>> from os.path import join
>>> qfile = join(shuntq.queue_directory, basename + '.pck')

>>> FakeArgs.qfile = [qfile]
>>> command.process(FakeArgs)
[----- start pickle -----]
<----- start object 1 ----->
From: aperson@example.com
To: test@example.com
Subject: Uh oh

I borkeded Mailman.

<----- start object 2 ----->
{'_parsemsg': False, 'bad': 'yes', 'bar': 'baz', 'foo': 7, 'version': 3}
[----- end pickle -----]

Maybe we don’t want to print the contents of the file though, in case we want
to enter the interactive prompt.

>>> FakeArgs.doprint = False
>>> command.process(FakeArgs)

Command line list removal

A system administrator can remove mailing lists by the command line.

>>> create_list('test@example.com')
<mailing list "test@example.com" at ...>

>>> from mailman.interfaces.listmanager import IListManager
>>> from zope.component import getUtility
>>> list_manager = getUtility(IListManager)
>>> list_manager.get('test@example.com')
<mailing list "test@example.com" at ...>

>>> class FakeArgs:
... quiet = False
... archives = False
... listname = ['test@example.com']
>>> args = FakeArgs()

>>> from mailman.commands.cli_lists import Remove
>>> command = Remove()
>>> command.process(args)
Removed list: test@example.com

>>> print(list_manager.get('test@example.com'))
None

You can also remove lists quietly.

>>> create_list('test@example.com')
<mailing list "test@example.com" at ...>

>>> args.quiet = True
>>> command.process(args)

>>> print(list_manager.get('test@example.com'))
None

Getting status

The status of the Mailman master process can be queried from the command line.
It’s clear at this point that nothing is running.

>>> from mailman.commands.cli_status import Status
>>> status = Status()

>>> class FakeArgs:
... pass

The status is printed to stdout and a status code is returned.

>>> status.process(FakeArgs)
GNU Mailman is not running
0

We can simulate the master starting up by acquiring its lock.

>>> from flufl.lock import Lock
>>> lock = Lock(config.LOCK_FILE)
>>> lock.lock()

Getting the status confirms that the master is running.

>>> status.process(FakeArgs)
GNU Mailman is running (master pid: ...

We shut down the master and confirm the status.

>>> lock.unlock()
>>> status.process(FakeArgs)
GNU Mailman is not running
0

Unshunt

When errors occur while processing email messages, the messages will end up in
the shunt queue. The unshunt command allows system administrators to
manage the shunt queue.

>>> from mailman.commands.cli_unshunt import Unshunt
>>> command = Unshunt()

>>> class FakeArgs:
... discard = False

Let’s say there is a message in the shunt queue.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <aardvark>
...
... """)

>>> shuntq = config.switchboards['shunt']
>>> len(list(shuntq.files))
0
>>> base_name = shuntq.enqueue(msg, {})
>>> len(list(shuntq.files))
1

The unshunt command by default moves the message back to the incoming
queue.

>>> inq = config.switchboards['in']
>>> len(list(inq.files))
0

>>> command.process(FakeArgs)

>>> from mailman.testing.helpers import get_queue_messages
>>> items = get_queue_messages('in')
>>> len(items)
1
>>> print(items[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: A broken message
Message-ID: <aardvark>

unshunt moves all shunt queue messages.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <badgers>
...
... """)
>>> base_name = shuntq.enqueue(msg, {})

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <crow>
...
... """)
>>> base_name = shuntq.enqueue(msg, {})

>>> len(list(shuntq.files))
2

>>> command.process(FakeArgs)
>>> items = get_queue_messages('in')
>>> len(items)
2

>>> sorted(item.msg['message-id'] for item in items)
['<badgers>', '<crow>']

Return to the original queue

While the messages in the shunt queue are generally returned to the incoming
queue, if the error occurred while the message was being processed from a
different queue, it will be returned to the queue it came from.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <dingo>
...
... """)

The queue that the message comes from is in message metadata.

>>> base_name = shuntq.enqueue(msg, {}, whichq='bounces')

>>> len(list(shuntq.files))
1
>>> len(list(config.switchboards['bounces'].files))
0

The message is automatically re-queued to the bounces queue.

>>> command.process(FakeArgs)
>>> len(list(shuntq.files))
0
>>> items = get_queue_messages('bounces')
>>> len(items)
1

>>> print(items[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: A broken message
Message-ID: <dingo>

Discarding all shunted messages

If you don’t care about the shunted messages, just discard them.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <elephant>
...
... """)
>>> base_name = shuntq.enqueue(msg, {})

>>> FakeArgs.discard = True
>>> command.process(FakeArgs)

The messages are now gone.

>>> items = get_queue_messages('in')
>>> len(items)
0

Printing the version

You can print the Mailman version number.

>>> from mailman.commands.cli_version import Version
>>> command = Version()

>>> command.process(None)
GNU Mailman 3...

Operating on mailing lists

The withlist command is a pretty powerful way to operate on mailing lists
from the command line. This command allows you to interact with a list at a
Python prompt, or process one or more mailing lists through custom made Python
functions.

XXX Test the interactive operation of withlist

Getting detailed help

Because withlist is so complex, you need to request detailed help.

>>> from mailman.commands.cli_withlist import Withlist
>>> command = Withlist()

>>> class FakeArgs:
... interactive = False
... run = None
... details = True
... listname = []

>>> class FakeParser:
... def error(self, message):
... print(message)
>>> command.parser = FakeParser()

>>> args = FakeArgs()
>>> command.process(args)
This script provides you with a general framework for interacting with a
mailing list.
...

Running a command

By putting a Python function somewhere on your sys.path, you can have
withlist call that function on a given mailing list. The function takes a
single argument, the mailing list.

>>> import os, sys
>>> old_path = sys.path[:]
>>> sys.path.insert(0, config.VAR_DIR)

>>> with open(os.path.join(config.VAR_DIR, 'showme.py'), 'w') as fp:
... print("""\
... def showme(mailing_list):
... print("The list's name is", mailing_list.fqdn_listname)
...
... def displayname(mailing_list):
... print("The list's display name is", mailing_list.display_name)
... """, file=fp)

If the name of the function is the same as the module, then you only need to
name the function once.

>>> mlist = create_list('aardvark@example.com')
>>> args.details = False
>>> args.run = 'showme'
>>> args.listname = 'aardvark@example.com'
>>> command.process(args)
The list's name is aardvark@example.com

The function’s name can also be different than the modules name. In that
case, just give the full module path name to the function you want to call.

>>> args.run = 'showme.displayname'
>>> command.process(args)
The list's display name is Aardvark

Multiple lists

You can run a command over more than one list by using a regular expression in
the listname argument. To indicate a regular expression is used, the string
must start with a caret.

>>> mlist_2 = create_list('badger@example.com')
>>> mlist_3 = create_list('badboys@example.com')

>>> args.listname = '^.*example.com'
>>> command.process(args)
The list's display name is Aardvark
The list's display name is Badboys
The list's display name is Badger

>>> args.listname = '^bad.*'
>>> command.process(args)
The list's display name is Badboys
The list's display name is Badger

>>> args.listname = '^foo'
>>> command.process(args)

Error handling

You get an error if you try to run a function over a non-existent mailing
list.

>>> args.listname = 'mystery@example.com'
>>> command.process(args)
No such list: mystery@example.com

You also get an error if no mailing list is named.

>>> args.listname = None
>>> command.process(args)
--run requires a mailing list name

IPython

You can use IPython [http://ipython.org/] as the interactive shell by changing certain
configuration variables in the [shell] section of your mailman.cfg file.
Set use_ipython to “yes” to switch to IPython, which must be installed on
your system.

Other configuration variables in the [shell] section can be used to
configure other aspects of the interactive shell. You can change both the
prompt and the banner.

Mailman - The GNU Mailing List Management System

Copyright (C) 1998-2016 by the Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Here is a history of user visible changes to Mailman.

3.0.4 – “Show Don’t Tell”

(2016-XX-XX)

3.0.3 – “Show Don’t Tell”

(2016-03-29)

Bugs

	When approving a subscription request via the REST API, for a user who is
already a member, return an HTTP 409 Conflict code instead of the previous
server traceback (and resulting HTTP 500 code). (Closes: #193)

	Trying to subscribe an address as a list owner (or moderator or nonmember)
which is already subscribed with that role produces a server error.
Originally given by Anirudh Dahiya. (Closes #198)

	Cross-posting messages held on both lists no longer fails. (Closes #176)

	Don’t let unknown charsets crash the “approved” rule. Given by Aurélien
Bompard. (Closes #203)

	Don’t let crashes in IArchiver plugins break handlers or runners.
(Closes #208)

	Fix “None” as display name in welcome message. Given by Aditya Divekar.
(Closes #194)

	Pin the Falcon version to < 1.0.

	Fix mailman shell processing of $PYTHONSTARTUP. (Closes #224)

3.0.2 – “Show Don’t Tell”

(2016-02-08)

Bugs

	Fix IntegrityErrors raised under PostreSQL when deleting users and
addresses. Given by Aurélien Bompard.

	Fix traceback in approved handler when the moderator password is None.
Given by Aurélien Bompard.

	Allow mailing lists to have localhost names with a suffix matching the
subcommand extensions. Given by Aurélien Bompard. (Closes: #168)

	Don’t traceback if a nonexistent message-id is deleted from the message
store. Given by Aurélien Bompard, tweaked by Barry Warsaw. (Closes: #167)

	Fix membership query when multiple users are subscribed to a mailing list.
Reported by Darrell Kresge. (Closes: #190)

	Prevent moderation of messages held for a different list. (Closes: #161)

Interfaces

	IMessageStore.delete_message() no longer raises a LookupError when
you attempt to delete a nonexistent message from the message store.

REST

	When [devmode]enabled is set, the JSON output is sorted. Given by
Aurélien Bompard.

	Fixed a number of corner cases for the return codes when PUTing or PATCHing
list configuration variables. (Closes: #182)

	Don’t crash the REST server when trying to subscribe a user without a
preferred address. (Closes: #185)

3.0.1 – “Show Don’t Tell”

(2015-11-13)

Bugs

	When the mailing list’s admin_notify_mchanges is True, the list owners
now get the subscription notification. (Closes: #1)

	Fix the traceback that occurred when trying to convert a text/html
subpart to plaintext via the mimedel handler. Now, a configuration
variable [mailman]html_to_plain_text_command in the mailman.cfg file
defines the command to use. It defaults to lynx. (Closes: #109)

	Confirmation messages should not be Precedence: bulk. (Closes #75)

	The prototype archiver is not web accessible so it does not have a
list_url or permalink. Given by Aurélien Bompard.

	The REST API incorrectly parsed is_server_owner values when given
explicitly in the POST that creates a user. (Closes #136)

	By POSTing to a user resource with an existing unlinked address, you can
link the address to the user. Given by Abhilash Raj.

	Fix constraint violations on mailing list deletes affecting PostgreSQL.
Given by Abhilash Raj. (Closes #115)

	mailman command with no subcommand now prints the help text. Given by
Abhilash Raj. (Closes #137)

	The MHonArc archiver must set stdin=PIPE when calling the subprocess. Given
by Walter Doekes.

	For now, treat DeliveryMode.summary_digests the same as .mime_digests.
(Closes #141). Also, don’t enqueue a particular digest if there are no
recipients for that digest.

	For Python versions earlier than 3.5, use a compatibility layer for a
backported smtpd module which can accept non-UTF-8 data. (Closes #140)

	Bulk emails are now decorated with headers and footers. Given by Aurélien
Bompard. (Closes #145)

	Core no longer depends on the standalone mock module. (Closes: #146)

	Fix the logging of moderation reasons. Given by Aurélien Bompard. Also,
update the postauth.txt and postheld.txt templates to not include the bogus
URLs, and to include the translated moderation reasons.

	Collapse multiple Re: in Subject headers. Given by Mark Sapiro.
(Closes: #147)

	Added Trove classifiers to setup.py. (Closes: #152)

	Fix the processing of subscription confirmation messages when the mailing
list is set to confirm-then-moderate. (Closes #114)

	Fix pagination values start and total_size in the REST API. Given by
Aurélien Bompard. (Closes: #154)

	Fix UnicodeEncodeError in the hold chain when sending the authorization
email to the mailing list moderators. (Closes: #144)

3.0.0 – “Show Don’t Tell”

(2015-04-28)

Architecture

	Domains now have a list of owners, which are IUser objects, instead of
the single contact_address they used to have. IUser objects now
also have a is_server_owner flag (defaulting to False) to indicate
whether they have superuser privileges. Give by Abhliash Raj, with fixes
and refinements by Barry Warsaw. (LP: #1423756)

	Mailing list subscription policy work flow has been completely rewritten.
It now properly supports email verification and subscription confirmation
by the user, and approval by the moderator using unique tokens.
IMailingList objects now have a subscription_policy attribute.
(LP: #1095552)

	Port the REST machinery to Falcon 0.3. (LP: #1446881)

Bugs

	Fix calculation of default configuration file to use when the $var_dir
is created by mailman start. (LP: #1411435)

	When creating a user with an email address, do not create the user record
if the email address already exists. Given by Andrew Stuart.
(LP: #1418280)

	When deleting a user via REST, make sure all linked addresses are deleted.
Found by Andrew Stuart. (LP: #1419519)

	When trying to subscribe an address to a mailing list through the REST API
where a case-differing version of the address is already subscribed, return
a 409 error instead of a 500 error. Found by Ankush Sharma. (LP: #1425359)

	mailman lists --domain was not properly handling its arguments. Given
by Manish Gill. (LP: #1166911)

	When deleting a user object, make sure their preferences are also deleted.
Given by Abhishek. (LP: #1418276)

	Be sure a mailing list’s acceptable aliases are deleted when the mailing
list itself is deleted. (LP: #1432239)

	The built-in example IArchiver implementations now explicitly return
None. (LP: #1203359)

	The test suite now runs successfully again with PostgreSQL. Given by
Aurélien Bompard. (LP: #1435941)

Configuration

	When specifying a file system path in the [paths.*] section, $cfg_file can
be used to expand into the path of the -C option if given. In the
default [paths.dev] section, $var_dir is now specified relative to
$cfg_file so that it won’t accidentally be relative to the current
working directory, if -C is given.

	$cwd is now an additional substitution variable for the mailman.cfg
file’s [paths.*] sections. A new [paths.here] section is added,
which puts the var_dir in $cwd. It is made the default layout.

Documentation

	Improve the documentation describing how to run Alembic to add new schema
migrations. Given by Abhilash Raj.

REST

	Backward incompatible change: The JSON representation for pending
mailing list subscription hold now no longer includes the password
key. Also, the address key has been renamed email for consistent
terminology and other usage.

	You can now view the contents of, inject messages into, and delete messages
from the various queue directories via the <api>/queues resource.

	You can now DELETE an address. If the address is linked to a user, the
user is not delete, it is just unlinked.

	A new API is provided to support non-production testing infrastructures,
allowing a client to cull all orphaned UIDs via DELETE on
<api>/reserved/uids/orphans. Note that no guarantees of API
stability will ever be made for resources under reserved.
(LP: #1420083)

	Domains can now optionally be created with owners; domain owners can be
added after the fact; domain owners can be deleted. Also, users now have
an is_server_owner flag as part of their representation, which defaults
to False, and can be PUT and PATCH’d. Given by Abhilash Raj, with fixes
and refinements by Barry Warsaw. (LP: #1423756)

3.0 beta 5 – “Carve Away The Stone”

(2014-12-29)

Bugs

	Fixed Unicode errors in the digest runner and when sending messages to the
site owner as a fallback. Given by Aurélien Bompard. (LP: #1130957).

	Fixed Unicode errors when a message being added to the digest has non-ascii
characters in its payload, but no Content-Type header defining a charset.
Given by Aurélien Bompard. (LP: #1170347)

	Fixed messages without a text/plain part crashing the Approved rule.
Given by Aurélien Bompard. (LP: #1158721)

	Fixed getting non-ASCII filenames from RFC 2231 i18n’d messages. Given by
Aurélien Bompard. (LP: #1060951)

	Fixed AttributeError on MIME digest messages. Given by Aurélien Bompard.
(LP: #1130696)

Commands

	The mailman conf command no longer takes the -t/–sort option; the
output is always sorted.

Configuration

	The [database]migrations_path setting is removed.

Database

	The ORM layer, previously implemented with Storm, has been replaced by
SQLAlchemy, thanks to the fantastic work by Abhilash Raj and Aurélien
Bompard. Alembic is now used for all database schema migrations.

	The new logger mailman.database logs any errors at the database layer.

Development

	Python 3.4 is now the minimum requirement.

	You no longer have to create a virtual environment separately when running
the test suite. Just use tox.

	You no longer have to edit src/mailman/testing/testing.cfg to run the
test suite against PostgreSQL. See src/mailman/docs/START.rst for
details.

Interfaces

	The RFC 2369 headers added to outgoing messages are now added in sorted
order.

	Several changes to the internal API:

	IListManager.mailing_lists is guaranteed to be sorted in List-ID order.

	IDomains.mailing_lists is guaranteed to be sorted in List-ID order.

	Iteration over domains via the IDomainManager is guaranteed to be sorted
by IDomain.mail_host order.

	ITemporaryDatabase interface and all implementations are removed.

REST

	The Falcon Framework has replaced restish as the REST layer. This is an
internal change only.

	The JSON representation http_etag key uses an algorithm that is
insensitive to Python’s dictionary sort order.

	The address resource now has an additional ‘/user’ sub-resource which can
be used to GET the address’s linked user if there is one. This
sub-resource also supports POST to link an unlinked address (with an
optional ‘auto_create’ flag), and PUT to link the address to a different
user. It also supports DELETE to unlink the address. (LP: #1312884)
Given by Aurélien Bompard based on work by Nicolas Karageuzian.

	The /3.0/system path is deprecated; use /3.0/system/versions to get
the system version information.

	You can access the system configuration via the resource path
/3.0/system/configuration/<section>. This returns a dictionary with
the keys being the section’s variables and the values being their value
from mailman.cfg as verbatim strings. You can get a list of all
section names via /3.0/system/configuration which returns a dictionary
containing the http_etag and the section names as a sorted list under
the sections key. The system configuration resource is read-only.

	Member resource JSON now include the member_id as a separate key.

3.0 beta 4 – “Time and Motion”

(2014-04-22)

Development

	Mailman 3 no longer uses zc.buildout and tests are now run by the
nose2 test runner. See src/mailman/docs/START.rst for details on
how to build Mailman and run the test suite. Also, use -P to select a
test pattern and -E to enable stderr debugging in runners.

	Use the enum34 package instead of flufl.enum.

	Use setuptools instead of distribute, since the latter is defunct.

REST

	Add reply_to_address and first_strip_reply_to as writable
attributes of a mailing list’s configuration. (LP: #1157881)

	Support pagination of some large collections (lists, users, members).
[Florian Fuchs] (LP: #1156529)

	Expose hide_address to the .../preferences REST API.
[Sneha Priscilla.] (LP: #1203519)

	Mailing lists can now individually enable or disable any archiver available
site-wide. [Joanna Skrzeszewska] (LP: #1158040)

	Addresses can be added to existing users, including display names, via the
REST API. [Florian Fuchs]

	Fixed a crash in the REST server when searching for nonmembers via
/find which we’ve never seen before, because those members only have an
address record, not a user record. This requires a small change in the API
where the JSON response’s address key now contains the URL to the
address resource, the new email key contains the email address as a
string, and the user key is optional.

Commands

	mailman conf now has a -t/–sort flag which sorts the output by section
and then key. [Karl-Aksel Puulmann and David Soto] (LP: 1162492)

	Greatly improve the fidelity of the Mailman 2.1 list importer functionality
(i.e. mailman import21). [Aurélien Bompard].

Configuration

	Add support for the Exim 4 MTA. [Stephen Turnbull]

	When creating the initial file system layout in var, e.g. via
bin/mailman info, add an var/etc/mailman.cfg file if one does not
already exist. Also, when initializing the system, look for that file as
the configuration file, just after ./mailman.cfg and before
~/.mailman.cfg. (LP: #1157861)

Database

	The bounceevent table now uses list-ids to cross-reference the mailing
list, to match other tables. Similarly for the IBounceEvent interface.

	Added a listarchiver table to support list-specific archivers.

Bugs

	Non-queue runners should not create var/queue subdirectories.
[Sandesh Kumar Agrawal] (LP: #1095422)

	Creation of lists with upper case names should be coerced to lower case.
(LP: #1117176)

	Fix REST server crash on mailman reopen due to no interception of
signals. (LP: #1184376)

	Add subject_prefix to the IMailingList interface, and clarify the
docstring for display_name. (LP: #1181498)

	Fix importation from MM2.1 to MM3 of the archive policy.
[Aurélien Bompard] (LP: #1227658)

	Fix non-member moderation rule to prefer a member sender if both members
and non-members are in the message’s sender list. [Aurélien Bompard]
(LP: #1291452)

	Fix IntegrityError (against PostgreSQL) when deleting a list with content
filters. [Aurélien Bompard] (LP: #1117174)

	Fix test isolation bug in languages.rst.
[Piotr Kasprzyk] (LP: #1308769)

3.0 beta 3 – “Here Again”

(2012-12-31)

Compatibility

	Python 2.7 is now required. Python 2.6 is no longer officially supported.
The code base is now also python2.7 -3 clean, although there are still
some warnings in 3rd party dependencies. (LP: #1073506)

REST

	API change: The JSON representation for held messages no longer
includes the data key. The values in this dictionary are flatted into
the top-level JSON representation. The key key is remove since it’s
redundant. Use message_id for held messages, and address for held
subscriptions/unsubscriptions. The following _mod_* keys are inserted
without the _mod_ prefix:

	_mod_subject -> subject

	_mod_hold_date -> hold_date

	_mod_reason -> reason

	_mod_sender -> sender

	_mod_message_id -> message_id

	List styles are supported through the REST API. Get the list of available
styles (by name) via …/lists/styles. Create a list in a specific style
by using POST data style_name=<style>. (LP: #975692)

	Allow the getting/setting of IMailingList.subject_prefix via the REST API
(given by Terri Oda). (LP: #1062893)

	Expose a REST API for membership change (subscriptions and unsubscriptions)
moderation. (LP: #1090753)

	Add list_id to JSON representation for a mailing list (given by Jimmy
Bergman).

	The canonical resource for a mailing list (and thus its self_link) is now
the URL with the list-id. To reference a mailing list, the list-id url is
preferred, but for backward compatibility, the posting address is still
accepted.

	You can now PUT and PATCH on user resources to change the user’s display
name or password. For passwords, you pass in the clear text password and
Mailman will hash it before storing.

	You can now verify and unverify an email address through the REST API.
POST to …/addresses/<email>/verify and …/addresses/<email>/unverify
respectively. The POST data is ignored. It is not an error to verify or
unverify an address more than once, but verifying an already verified
address does not change its .verified_on date. (LP: #1054730)

	Deleting a user through the REST API also deletes all the user’s linked
addresses and memberships. (LP: #1074374)

	A user’s password can be verified by POSTing to …/user/<id>/login. The
data must contain a single parameter cleartext_password and if this
matches, a 204 (No Content) will be returned, otherwise a 403 (Forbidden)
is returned. (LP: #1065447)

Configuration

	[passlib]path configuration variable renamed to [passlib]configuration.

	Postfix-specific configurations in the [mta] section are moved to a
separate file, named by the [mta]configuration variable.

	In the new postfix.cfg file, postfix_map_cmd is renamed to
postmap_command.

	The default list style is renamed to legacy-default and a new
legacy-announce style is added. This is similar to the legacy-default
except set up for announce-only lists.

Database

	The ban table now uses list-ids to cross-reference the mailing list,
since these cannot change even if the mailing list is moved or renamed.

	The following columns were unused and have been removed:

	mailinglist.new_member_options

	mailinglist.send_reminders

	mailinglist.subscribe_policy

	mailinglist.unsubscribe_policy

	mailinglist.subscribe_auto_approval

	mailinglist.private_roster

	mailinglist.admin_member_chunksize

Interfaces

	The IBanManager is no longer a global utility. Instead, you adapt an
IMailingList to an IBanManager to manage the bans for a specific
mailing list. To manage the global bans, adapt None.

Commands

	bin/mailman aliases loses the –output, –format, and –simple
arguments, and adds a –directory argument. This is necessary to support
the Postfix relay_domains support.

	bin/mailman start was passing the wrong relative path to its runner
subprocesses when -C was given. (LP: #982551)

	bin/runner command has been simplified and its command line options
reduced. Now, only one -r/–runner option may be provided and the
round-robin feature has been removed.

Other

	Added support for Postfix relay_domains setting for better virtual domain
support. [Jimmy Bergman].

	Two new events are triggered on membership changes: SubscriptionEvent
when a new member joins a mailing list, and an UnsubscriptionEvent when a
member leaves a mailing list. (LP: #1047286)

	Improve the –help text for the start, stop, restart, and reopen
subcommands. (LP: #1035033)

Bugs

	Fixed send_goodbye_message(). (LP: #1091321)

	Fixed REST server crash on reopen command. Identification and test
provided by Aurélien Bompard. (LP: #1184376)

3.0 beta 2 – “Freeze”

(2012-09-05)

Architecture

	The link between members and the mailing lists they are subscribed to, is
now via the RFC 2369 list_id instead of the fqdn listname (i.e. posting
address). This is because while the posting address can change if the
mailing list is moved to a new server, the list id is fixed.
(LP: #1024509)

	IListManager.get_by_list_id() added.

	IListManager.list_ids added.

	IMailingList.list_id added.

	Several internal APIs that accepted fqdn list names now require list ids,
e.g. ISubscriptionService.join() and .find_members().

	IMember.list_id attribute added; .mailing_list is now an alias that
retrieves and returns the IMailingList.

	passlib [http://packages.python.org/passlib/index.html] is now used for all password hashing instead of flufl.password.
The default hash is sha512_crypt. (LP: #1015758)

	Internally, all datetimes are kept in the UTC timezone, however because of
LP: #280708, they are stored in the database in naive format.

	received_time is now added to the message metadata by the LMTP runner
instead of by Switchboard.enqueue(). This latter no longer depends on
received_time in the metadata.

	The ArchiveRunner no longer acquires a lock before it calls the
individual archiver implementations, since not all of them need a lock. If
they do, the implementations must acquire said lock themselves.

	The news runner and queue has been renamed to the more accurate nntp.
The runner has also been ported to Mailman 3 (LP: #967409). Beta testers
can safely remove $var_dir/queue/news.

	A mailing list’s moderator password is no longer stored in the clear; it
is hashed with the currently selected scheme.

	An AddressVerificationEvent is triggered when an IAddress is verified
or unverified. (LP: #975698)

	A PasswordChangeEvent is triggered when an IUser’s password changes.
(LP: #975700)

	When a queue runner gets an exception in its _dispose() method, a
RunnerCrashEvent is triggered, which contains references to the queue
runner, mailing list, message, metadata, and exception. Interested parties
can subscribe to that zope.event for notification.

	Events renamed and moved:
* mailman.chains.accept.AcceptNotification
* mailman.chains.base.ChainNotification
* mailman.chains.discard.DiscardNotification
* mailman.chains.hold.HoldNotification
* mailman.chains.owner.OwnerNotification
* mailman.chains.reject.RejectNotification
changed to (respectively):
* mailman.interfaces.chains.AcceptEvent
* mailman.interfaces.chains.ChainEvent
* mailman.interfaces.chains.DiscardEvent
* mailman.interfaces.chains.HoldEvent
* mailman.interfaces.chains.AcceptOwnerEvent
* mailman.interfaces.chains.RejectEvent

	A ConfigurationUpdatedEvent is triggered when the system-wide global
configuration stack is pushed or popped.

	The policy for archiving has now been collapsed into a single enum, called
ArchivePolicy. This describes the three states of never archive, archive
privately, and archive_publicly. (LP: #967238)

Database

	Schema migrations (LP: #971013)

	mailinglist.include_list_post_header -> allow_list_posts

	mailinglist.news_prefix_subject_too -> nntp_prefix_subject_too

	mailinglist.news_moderation -> newsgroup_moderation

	mailinglist.archive and mailinglist.archive_private have been collapsed
into archive_policy.

	mailinglist.nntp_host has been removed.

	mailinglist.generic_nonmember_action has been removed (LP: #975696)

	Schema migrations (LP: #1024509)
- member.mailing_list -> list_id

	The PostgreSQL port of the schema accidentally added a moderation_callback
column to the mailinglist table. Since this is unused in Mailman, it was
simply commented out of the base schema for PostgreSQL.

REST

	Expose archive_policy in the REST API. Contributed by Alexander
Sulfrian. (LP: #1039129)

Configuration

	New configuration variables clobber_date and clobber_skew supported in
every [archiver.<name>] section. These are used to determine under what
circumstances a message destined for a specific archiver should have its
Date: header clobbered. (LP: #963612)

	With the switch to passlib [http://packages.python.org/passlib/index.html], [passwords]password_scheme has been
removed. Instead use [passwords]path to specify where to find the
passlib.cfg file. See the comments in schema.cfg for details.

	Configuration schema variable changes:
* [nntp]username -> [nntp]user
* [nntp]port (added)

	Header check specifications in the mailman.cfg file have changed quite
bit. The previous [spam.header.foo] sections have been removed.
Instead, there’s a new [antispam] section that contains a header_checks
variable. This variable takes multiple lines of Header: regexp values,
one per line. There is also a new jump_chain variable which names the
chain to jump to should any of the header checks (including the
list-specific, and programmatically added ones) match.

Documentation

	Some additional documentation on related components such as Postorius and
hyperkitty have been added, given by Stephen J Turnbull.

Bug fixes

	Fixed the RFC 1153 digest footer to be compliant. (LP: #887610)

	Fixed a UnicodeError with non-ascii message bodies in the approved rule,
given by Mark Sapiro. (LP: #949924)

	Fixed a typo when returning the configuration file’s header match checks.
(LP: #953497)

	List-Post should be NO when posting is not allowed. (LP: #987563)

	Non-unicode values in msgdata broke pending requests. (LP: #1031391)

	Show devmode in bin/mailman info output. (LP: #1035028)

	Fix residual references to the old IMailingList archive variables.
(LP: #1031393)

3.0 beta 1 – “The Twilight Zone”

(2012-03-23)

Architecture

	Schema migrations have been implemented.

	Implement the style manager as a utility instead of an attribute hanging
off the mailman.config.config object.

	PostgreSQL support contributed by Stephen A. Goss. (LP: #860159)

	Separate out the RFC 2369 header adding handler.

	Dynamically calculate the List-Id header instead of storing it in the
database. This means it cannot be changed.

	Major redesign of the template search system, fixing LP: #788309. $var_dir
is now used when search for all template overrides, site, domain, or
mailing list. The in-tree English templates are used only as a last
fallback.

	Support downloading templates by URI, including mailman:// URIs. This is
used in welcome and goodbye messages, as well as regular and digest headers
and footers, and supports both language and mailing list specifications.
E.g. mailman:///test@example.com/it/welcome.txt

	$user_password is no longer supported as a placeholder in headers and
footers.

	Mailing lists get multiple chains and pipelines. For example, normal
postings go through the posting_chain while messages to owners to through
owners_chain. The default built-in chain is renamed to
default-posting-chain while the built-in pipeline is renamed
default-posting-pipeline.

	The experimental maildir runner is removed. Use LMTP.

	The LMTP server now requires that the incoming message have a Message-ID,
otherwise it rejects the message with a 550 error. Also, the LMTP server
adds the X-Message-ID-Hash header automatically. The inject cli
command will also add the X-Message-ID-Hash header, but it will craft a
Message-ID header first if one is missing from the injected text. Also,
inject will always set the correct value for the original_size
attribute on the message object, instead of trusting a possibly incorrect
value if it’s already set. The individual IArchiver implementations no
longer set the X-Message-ID-Hash header.

	The Prototype archiver now stores its files in maildir format inside of
$var_dir/archives/prototype, given by Toshio Kuratomi.

	Improved “8 mile high” document distilled by Stephen J Turnbull from the
Pycon 2012 Mailman 3 sprint. Also improvements to the Sphinx build given
by Andrea Crotti (LP: #954718).

	Pipermail has been eradicated.

	Configuration variable [mailman]filtered_messages_are_preservable
controls whether messages which have their top-level Content-Type
filtered out can be preserved in the bad queue by list owners.

	Configuration section [scrubber] removed, as is the scrubber handler.
This handler was essentially incompatible with Mailman 3 since it required
coordination with Pipermail to store attachments on disk.

Database

	Schema changes:
- welcome_msg -> welcome_message_uri
- goodbye_msg -> goodbye_message_uri
- send_welcome_msg -> send_welcome_message
- send_goodbye_msg -> send_goodbye_message
- msg_header -> header_uri
- msg_footer -> footer_uri
- digest_header -> digest_header_uri
- digest_footer -> digest_footer_uri
- start_chain -> posting_chain
- pipeline -> posting_pipeline
- real_name -> display_name (mailinglist, user, address)

	Schema additions:
- mailinglist.filter_action
- mailinglist.owner_chain
- mailinglist.owner_pipeline

REST

	Held messages can now be moderated through the REST API. Mailing list
resources now accept a held path component. GETing this returns all held
messages for the mailing list. POSTing to a specific request id under this
url can dispose of the message using Action enums.

	Mailing list resources now have a member_count attribute which gives the
number of subscribed members. Given by Toshio Kuratomi.

Interfaces

	Add property IUserManager.members to return all IMembers in the system.

	Add property IListmanager.name_components which returns 2-tuples for
every mailing list as (list_name, mail_host).

	Remove previously deprecated IListManager.get_mailing_lists().

	IMailTransportAgentAliases now explicitly accepts duck-typed arguments.

	IRequests interface is removed. Now just use adaptation from
IListRequests directly (which takes an IMailingList object).

	handle_message() now allows for Action.hold which is synonymous with
Action.defer (since the message is already being held).

	IListRequests.get_request() now takes an optional request_type
argument to narrow the search for the given request.

	New ITemplateLoader utility.

	ILanguageManager.add() returns the ILanguage object just created.

	IMailinglist.decorators removed; it was unused

	IMailingList.real_name -> IMailingList.display_name

	IUser.real_name -> IUser.display_name

	IAddress.real_name -> IAddress.display_name

	Add property IRoster.member_count.

Commands

	IPython support in bin/mailman shell contributed by Andrea Crotti.
(LP: #949926).

	The mailman.cfg configuration file will now automatically be detected if
it exists in an etc directory which is a sibling of argv0.

	bin/mailman shell is an alias for withlist.

	The confirm email command now properly handles Re:-like prefixes, even
if they contain non-ASCII characters. (LP: #685261)

	The join email command no longer accepts an address= argument. Its
digest= argument now accepts the following values: no (for regular
delivery), mime, or plain.

	Added a help email command.

	A welcome message is sent when the user confirms their subscription via
email.

	Global -C option now accepts an absolute path to the configuration
file. Given by Andrea Crotti. (LP: #953707)

Bug fixes

	Subscription disabled probe warning notification messages are now sent
without a Precedence: header. Given by Mark Sapiro. (LP: #808821)

	Fixed KeyError in retry runner, contributed by Stephen A. Goss.
(LP: #872391)

	Fixed bogus use of bounce_processing attribute (should have been
process_bounces, with thanks to Vincent Fretin. (LP: #876774)

	Fix test_moderation for timezones east of UTC+0000, given by blacktav.
(LP: #890675)

3.0 alpha 8 – “Where’s My Thing?”

(2011-09-23)

Architecture

	Factor out bounce detection to flufl.bounce.

	Unrecognized bounces can now also be forwarded to the site owner.

	mailman.qrunner log is renamed to mailman.runner

	master-qrunner.lck -> master.lck

	master-qrunner.pid -> master.pid

	Four new events are created, and notifications are sent during mailing list
lifecycle changes:
- ListCreatingEvent - sent before the mailing list is created
- ListCreatedEvent - sent after the mailing list is created
- ListDeletingEvent - sent before the mailing list is deleted
- ListDeletedEvent - sent after the mailing list is deleted

	Four new events are created, and notifications are sent during domain
lifecycle changes:
- DomainCreatingEvent - sent before the domain is created
- DomainCreatedEvent - sent after the domain is created
- DomainDeletingEvent - sent before the domain is deleted
- DomainDeletedEvent - sent after the domain is deleted

	Using the above events, when a domain is deleted, associated mailing lists
are deleted. (LP: #837526)

	IDomain.email_host -> .mail_host (LP: #831660)

	User and Member ids are now proper UUIDs.

	Improved the way enums are stored in the database, so that they are more
explicitly expressed in the code, and more database efficient.

REST

	Preferences for addresses, users, and members can be accessed, changed, and
deleted through the REST interface. Hierarchical, combined preferences for
members, and system preferences can be read through the REST interface.
(LP: #821438)

	The IMailingList attribute host_name has been renamed to mail_host
for consistency. This changes the REST API for mailing list
resources. (LP: #787599)

	New REST resource http://…/members/find [http://.../members/find] can be POSTed to in order to find
member records. Optional arguments are subscriber (email address to
search for), fqdn_listname, and role (i.e. MemberRole). (LP: #799612)

	You can now query or change a member’s delivery_mode attribute through
the REST API (LP: #833132). Given by Stephen A. Goss.

	New REST resource http://…/<domain>/lists can be GETed in order to find
all the mailing lists in a specific domain (LP: #829765). Given by
Stephen A. Goss.

	Fixed /lists/<fqdn_listname>/<role>/<email> (LP: #825570)

	Remove role plurals from /lists/<fqdn_listname/rosters/<role>

	Fixed incorrect error code for /members/<bogus> (LP: #821020). Given by
Stephen A. Goss.

	DELETE users via the REST API. (LP: #820660)

	Moderators and owners can be added via REST (LP: #834130). Given by
Stephen A. Goss.

	Getting the roster or configuration of a nonexistent list did not give a
404 error (LP: #837676). Given by Stephen A. Goss.

	PATCHing an invalid attribute on a member did not give a 400 error
(LP: #833376). Given by Stephen A. Goss.

	Getting the memberships for a non-existent address did not give a 404 error
(LP: #848103). Given by Stephen A. Goss.

Commands

	bin/qrunner is renamed to bin/runner.

	bin/mailman aliases gains -f and -s options.

	bin/mailman create no longer allows a list to be created with bogus owner
addresses. (LP: #778687)

	bin/mailman start –force option is fixed. (LP: #869317)

Documentation

	Update the COPYING file to contain the GPLv3. (LP: #790994)

	Major terminology change: ban the terms “queue runners” and “qrunners” since
not all runners manage queue directories. Just call them “runners”. Also,
the master is now just called “the master runner”.

Testing

	New configuration variable in [devmode] section, called wait which sets
the timeout value used in the test suite for starting up subprocesses.

	Handle SIGTERM in the REST server so that the test suite always shuts down
correctly. (LP: #770328)

Other bugs and changes

	Moderating a message with Action.accept now sends the message. (LP: #827697)

	Fix AttributeError triggered by i18n call in autorespond_to_sender()
(LP: #827060)

	Local timezone in X-Mailman-Approved-At caused test failure. (LP: #832404)

	InvalidEmailAddressError no longer repr()’s its value.

	Rewrote a test for compatibility between Python 2.6 and 2.7. (LP: #833208)

	Fixed Postfix alias file generation when more than one mailing list
exists. (LP: #874929). Given by Vincent Fretin.

3.0 alpha 7 – “Mission”

(2011-04-29)

Architecture

	Significant updates to the subscription model. Members can now subscribe
with a preferred address, and changes to that will be immediately reflected
in mailing list subscriptions. Users who subscribe with an explicit
address can easily change to a different address, as long as that address
is verified. (LP: #643949)

	IUsers and IMembers are now assigned a unique, random, immutable id.

	IUsers now have created_on and .preferred_address properties.

	IMembers now have a .user attribute for easy access to the subscribed user.

	When created with add_member(), passwords are always stored encrypted.

	In all interfaces, “email” refers to the textual email address while
“address” refers to the IAddress object.

	mailman.chains.base.Chain no longer self registers.

	New member and nonmember moderation rules and chains. This effectively
ports moderation rules from Mailman 2 and replaces attributes such as
member_moderation_action, default_member_moderation, and
generic_nonmember_action. Now, nonmembers exist as subscriptions on a
mailing list and members have a moderation_action attribute which describes
the disposition for postings from that address.

	Member.is_moderated was removed because of the above change.

	default_member_action and default_nonmember_action were added to mailing
lists.

	All sender addresses are registered (unverified) with the user manager by
the incoming queue runner. This way, nonmember moderation rules will
always have an IAddress that they can subscribe to the list (as
MemberRole.nonmember).

	Support for SMTP AUTH added via smtp_user and smtp_pass configuration
variables in the [mta] section. (LP: #490044)

	IEmailValidator interface for pluggable validation of email addresses.

	.subscribe() is moved from the IAddress to the IMailingList

	IAddresses get their registered_on attribute set when the object is created.

Configuration

	[devmode] section gets a new ‘testing’ variable.

	Added password_scheme and password_length settings for defining the
default password encryption scheme.

	creator_pw_file and site_pw_file are removed.

Commands

	‘bin/mailman start’ does a better job of producing an error when Mailman is
already running.

	‘bin/mailman status’ added for providing command line status on the master
queue runner watcher process.

	‘bin/mailman info’ now prints the REST root url and credentials.

	mmsitepass removed; there is no more site password.

REST

	Add Basic Auth support for REST API security. (Jimmy Bergman)

	Include the fqdn_listname and email address in the member JSON
representation.

	Added reply_goes_to_list, send_welcome_msg, welcome_msg,
default_member_moderation to the mailing list’s writable attributes in the
REST service. (Jimmy Bergman)

	Expose the new membership model to the REST API. Canonical member resource
URLs are now much shorter and live in their own top-level namespace instead
of within the mailing list’s namespace.

	/addresses/<email>/memberships gets all the memberships for a given email
address.

	/users is a new top-level URL under which user information can be
accessed. Posting to this creates new users.

	Users can subscribe to mailing lists through the REST API.

	Domains can be deleted via the REST API.

	PUT and PATCH to a list configuration now returns a 204 (No Content).

Build

	Support Python 2.7. (LP: #667472)

	Disable site-packages in buildout.cfg because of LP: #659231.

	Don’t include eggs/ or parts/ in the source tarball. (LP: #656946)

	flufl.lock is now required instead of locknix.

Bugs fixed

	Typo in scan_message(). (LP: #645897)

	Typo in add_member(). (LP: #710182) (Florian Fuchs)

	Re-enable bounce detectors. (LP: #756943)

	Clean up many pyflakes problems; ditching pylint.

3.0 alpha 6 – “Cut to the Chase”

(2010-09-20)

Commands

	The functionality of ‘bin/list_members’ has been moved to
‘bin/mailman members’.

	‘bin/mailman info’ -v/–verbose output displays the file system
layout paths Mailman is currently configured to use.

Configuration

	You can now configure the paths Mailman uses for queue files, lock files,
data files, etc. via the configuration file. Define a file system ‘layout’
and then select that layout in the [mailman] section. Default layouts
include ‘local’ for putting everything in /var/tmp/mailman, ‘dev’ for local
development, and ‘fhs’ for Filesystem Hierarchy Standard 2.3 (LP #490144).

	Queue file directories now live in $var_dir/queues.

REST

	lazr.restful has been replaced by restish as the REST publishing technology
used by Mailman.

	New REST API for getting all the members of a roster for a specific mailing
list.

	New REST API for getting and setting a mailing list’s configuration. GET
and PUT are supported to retrieve the current configuration, and set all
the list’s writable attributes in one request. PATCH is supported to
partially update a mailing list’s configuration. Individual options can be
set and retrieved by using subpaths.

	Subscribing an already subscribed member via REST now returns a 409 HTTP
error. LP: #552917

	Fixed a bug when deleting a list via the REST API. LP: #601899

Architecture

	X-BeenThere header is removed.

	Mailman no longer touches the Sender or Errors-To headers.

	Chain actions can now fire Zope events in their _process()
implementations.

	Environment variable $MAILMAN_VAR_DIR can be used to control the var/
directory for Mailman’s runtime files. New environment variable
$MAILMAN_UNDER_MASTER_CONTROL is used instead of the qrunner’s –subproc/-s
option.

Miscellaneous

	Allow X-Approved and X-Approve headers, equivalent to Approved and
Approve. LP: #557750

	Various test failure fixes. LP: #543618, LP: #544477

	List-Post header is retained in MIME digest messages. LP: #526143

	Importing from a Mailman 2.1.x list is partially supported.

3.0 alpha 5 – “Distant Early Warning”

(2010-01-18)

REST

	Add REST API for subscription services. You can now:

	list all members in all mailing lists

	subscribe (and possibly register) an address to a mailing list

	unsubscribe an address from mailing list

Commands

	‘bin/dumpdb’ is now ‘bin/mailman qfile’

	‘bin/unshunt’ is now ‘bin/mailman unshunt’

	Mailman now properly handles the ‘-join’, ‘-leave’, and ‘-confirm’ email
commands and sub-addresses. ‘-subscribe’ and ‘-unsubscribe’ are aliases
for ‘-join’ and ‘-leave’ respectively.

Configuration

	devmode settings now live in their own [devmode] section.

	Mailman now searches for a configuration file using this search order. The
first file that exists is used.

	-C config command line argument

	$MAILMAN_CONFIG_FILE environment variable

	./mailman.cfg

	~/.mailman.cfg

	/etc/mailman.cfg

3.0 alpha 4 – “Vital Signs”

(2009-11-28)

Commands

	‘bin/inject’ is now ‘bin/mailman inject’, with some changes

	‘bin/mailmanctl’ is now ‘bin/mailman start|stop|reopen|restart’

	‘bin/mailman version’ is added (output same as ‘bin/mailman –version’)

	‘bin/mailman members’ command line arguments have changed. It also
now ignores blank lines and lines that start with #. It also no longer
quits when it sees an address that’s already subscribed.

	‘bin/withlist’ is now ‘bin/mailman withlist’, and its command line
arguments have changed.

	‘bin/mailman lists’ command line arguments have changed.

	‘bin/genaliases’ is now ‘bin/mailman aliases’

Architecture

	A near complete rewrite of the low-level SMTP delivery machinery. This
greatly improves readability, testability, reuse and extensibility. Almost
all the old functionality has been retained. The smtp_direct.py handler is
gone.

	Refactor model objects into the mailman.model subpackage.

	Refactor most of the i18n infrastructure into a separate flufl.i18n package.

	Switch from setuptools to distribute.

	Remove the dependency on setuptools_bzr

	Do not create the .mo files during setup.

Configuration

	All log files now have a ‘.log’ suffix by default.

	The substitution placeholders in the verp_format configuration variable
have been renamed.

	Add a devmode configuration variable that changes some basic behavior.
Most importantly, it allows you to set a low-level SMTP recipient for all
mail for testing purposes. See also devmode_recipient.

3.0 alpha 3 – “Working Man”

(2009-08-21)

Configuration

	Configuration is now done through lazr.config. Defaults.py is
dead. lazr.config files are essentially hierarchical ini files.

	Domains are now stored in the database instead of in the configuration file.

	pre- and post- initialization hooks are now available to plugins. Specify
additional hooks to run in the configuration file.

	Add the environment variable $MAILMAN_CONFIG_FILE which overrides the -C
command line option.

	Make LMTP more compliant with Postfix docs (Patrick Koetter)

	Added a NullMTA for mail servers like Exim which just work automatically.

Architecture

	‘bin/mailman’ is a new super-command for managing Mailman from the command
line. Some older bin scripts have been converted, with more to come.

	Mailman now has an administrative REST interface which can be used to get
information from and manage Mailman remotely.

	Back port of Mailman 2.1’s limit on .bak file restoration. After 3
restores, the file is moved to the bad queue, with a .psv extension. (Mark
Sapiro)

	Digest creation is moved into a new queue runner so it doesn’t block main
message processing.

Other changes

	bin/make_instance is no longer necessary, and removed

	The debug log is turned up to info by default to reduce log file spam.

Building and installation

	All doc tests can now be turned into documentation, via Sphinx. Just run
bin/docs after bin/buildout.

3.0 alpha 2 – “Grand Designs”

(03-Jan-2009)

Licensing

	Mailman 3 is now licensed under the GPLv3.

Bug fixes

	Changed bin/arch to attempt to open the mbox before wiping the old
archive. Launchpad bug #280418.

	Added digest.mbox and pending.pck to the ‘list’ files checked by
check_perms. Launchpad bug #284802.

Architecture

	Converted to using zope.testing as the test infrastructure. Use bin/test
now to run the full test suite.
<http://pypi.python.org/pypi/zope.testing/3.7.1>

	Partially converted to using lazr.config as the new configuration
regime. Not everything has been converted yet, so some manual editing
of mailman/Defaults.py is required. This will be rectified in future
versions. <http://launchpad.net/lazr.config>

	All web-related stuff is moved to its own directory, effectively moving
it out of the way for now.

	The email command infrastructure has been reworked to play more nicely
with the plug-in architecture. Not all commands have yet been
converted.

Other changes

	The LMTP server now properly calculates the message’s original size.

	For command line scripts, -C names the configuration file to use. For
convenient testing, if -C is not given, then the environment variable
MAILMAN_CONFIG_FILE is consulted.

	Support added for a local MHonArc archiver, as well as archiving
automatically in the remote Mail-Archive.com service.

	The permalink proposal for supporting RFC 5064 has been adopted.

	Mailing lists no longer have a .web_page_url attribute; this is taken from
the mailing list’s domain’s base_url attribute.

	Incoming MTA selection is now taken from the config file instead of
plugins. An MTA for Postfix+LMTP is added. bin/genaliases works again.

	If a message has no Message-ID, the stock archivers will return None for
the permalink now instead of raising an assertion.

	IArchiver no longer has an is_enabled property; this is taken from the
configuration file now.

Installation

	Python 2.6 is the minimal requirement.

	Converted to using zc.buildout as the build infrastructure. See
docs/ALPHA.txt for details.
<http://pypi.python.org/pypi/zc.buildout/1.1.1>

3.0 alpha 1 – “Leave That Thing Alone”

(08-Apr-2008)

User visible changes

	So called ‘new style’ subject prefixing is the default now, and the only
option. When a list’s subject prefix is added, it’s always done so before
any Re: tag, not after. E.g. ‘[My List] Re: The subject’.

	RFC 2369 headers List-Subscribe and List-Unsubscribe now use the preferred
-join and -leave addresses instead of the -request address with a subject
value.

Configuration

	There is no more separate configure; make; make install step. Mailman 3.0
is a setuptools package.

	Mailman can now be configured via a ‘mailman.cfg’ file which lives in
$VAR_PREFIX/etc. This is used to separate the configuration from the
source directory. Alternative configuration files can be specified via
-C/–config for most command line scripts. mailman.cfg contains Python
code. mm_cfg.py is no more. You do not need to import Defaults.py in
etc/mailman.cfg. You should still consult Defaults.py for the list of site
configuration variables available to you.

See the etc/mailman.cfg.sample file.

	PUBLIC_ARCHIVE_URL and DEFAULT_SUBJECT_PREFIX now takes $-string
substitutions instead of %-string substitutions. See documentation in
Defaults.py.in for details.

	Message headers and footers now only accept $-string substitutions;
%-strings are no longer supported. The substitution variable
‘_internal_name’ has been removed; use $list_name or $real_name
instead. The substitution variable $fqdn_listname has been added.
DEFAULT_MSG_FOOTER in Defaults.py.in has been updated accordingly.

	The KNOWN_SPAMMERS global variable is replaced with HEADER_MATCHES. The
mailing list’s header_filter_rules variable is replaced with header_matches
which has the same semantics as HEADER_MATCHES, but is list-specific.

	DEFAULT_MAIL_COMMANDS_MAX_LINES -> EMAIL_COMMANDS_MAX_LINES

	All SMTP_LOG_* templates use $-strings and all consistently write the
Message-ID as the first item in the log entry.

	DELIVERY_MODULE now names a handler, not a module (yes, this is a
misnomer, but it will likely change again before the final release).

Architecture

	Internally, all strings are Unicodes.

	Implementation of a chain-of-rules based approach for deciding whether a
message should initially be accepted, held for approval, rejected/bounced,
or discarded. This replaces most of the disposition handlers in the
pipeline. The IncomingRunner now only processes message through the rule
chains, and once accepted, places the message in a new queue processed by
the PipelineRunner.

	Substantially reworked the entire queue runner process management,
including mailmanctl, a new master script, and the qrunners. This should
be much more robust and reliable now.

	The Storm ORM is used for data storage, with the SQLite backend as the
default relational database.

	Zope interfaces are used to describe the major components.

	Users are now stored in a unified database, and shared across all mailing
lists.

	Mailman’s web interface is now WSGI compliant. WSGI is a Python standard
(PEP 333) allowing web applications to be (more) easily integrated with any
number of existing Python web application frameworks. For more information
see:

http://www.wsgi.org/wsgi
http://www.python.org/dev/peps/pep-0333/

Mailman can still be run as a traditional CGI program of course.

	Mailman now provides an LMTP server for more efficient integration with
supporting mail servers (e.g. Postfix, Sendmail). The Local Mail Transport
Protocol is defined in RFC 2033:

http://www.faqs.org/rfcs/rfc2033.html

	Virtual domains are now fully supported in that mailing lists of the same
name can exist in more than one domain. This is accomplished by renaming
the lists/ and archives/ subdirectories after the list’s posting address.
For example, data for list foo in example.com and list foo in example.org
will be stored in lists/foo@example.com and lists/foo@example.org.

For Postfix or manual MTA users, you will need to regenerate your mail
aliases. Use bin/genaliases.

VIRTUAL_HOST_OVERVIEW has been removed, effectively Mailman now operates
as if it were always enabled. If your site has more than one domain,
you must configure all domains by using add_domain() in your
etc/mailman.cfg flie (see below – add_virtual() has been removed).

	If you had customizations based on Site.py, you will need to re-implement
them. Site.py has been removed.

	The site list is no more. You can remove your ‘mailman’ site list unless
you want to retain it for other purposes, but it is no longer used (or
required) by Mailman. You should set NO_REPLY_ADDRESS to an address that
throws away replies, and you should set SITE_OWNER_ADDRESS to an email
address that reaches the person ultimately responsible for the Mailman
installation. The MAILMAN_SITE_LIST variable has been removed.

	qrunners no longer restart on SIGINT; SIGUSR1 is used for that now.

Internationalization Big Changes

	Translators should work only on messages/<lang>/LC_MESSAGES/mailman.po.
Templates files are generated from mailman.po during the build process.

New Features

	Confirmed member change of address is logged in the ‘subscribe’ log, and if
admin_notify_mchanges is true, a notice is sent to the list owner using a
new adminaddrchgack.txt template.

	There is a new list attribute ‘subscribe_auto_approval’ which is a list of
email addresses and regular expressions matching email addresses whose
subscriptions are exempt from admin approval. RFE 403066.

Command line scripts

	Most scripts have grown a -C/–config flag to allow you to specify a
different configuration file. Without this, the default etc/mailman.cfg
file will be used.

	the -V/–virtual-host-overview switch in list_lists has been removed, while
-d/–domain and -f/–full have been added.

	bin/newlist is renamed bin/create_list and bin/rmlist is renamed
bin/remove_list. Both take fully-qualified list names now (i.e. the list’s
posting address), but also accept short names, in which case the default
domain is used. newlist’s -u/–urlhost and -e/–emailhost switches have
been removed. The domain that the list is being added to must already
exist.

	Backport the ability to specify additional footer interpolation variables
by the message metadata ‘decoration-data’ key.

Bug fixes and other patches

	Removal of DomainKey/DKIM signatures is now controlled by Defaults.py
mm_cfg.py variable REMOVE_DKIM_HEADERS (default = No).

	Queue runner processing is improved to log and preserve for analysis in the
shunt queue certain bad queue entries that were previously logged but lost.
Also, entries are preserved when an attempt to shunt throws an exception
(1656289).

	The processing of Topics regular expressions has changed. Previously the
Topics regexp was compiled in verbose mode but not documented as such which
caused some confusion. Also, the documentation indicated that topic
keywords could be entered one per line, but these entries were not handled
properly. Topics regexps are now compiled in non-verbose mode and multi-
line entries are ‘ored’. Existing Topics regexps will be converted when
the list is updated so they will continue to work.

	The List-Help, List-Subscribe, and List-Unsubscribe headers were
incorrectly suppressed in messages that Mailman sends directly to users.

	The ‘adminapproved’ metadata key is renamed ‘moderator_approved’.

GNU Mailman Coding Style Guide

Copyright (C) 2002-2016 Barry A. Warsaw

Python coding style guide for GNU Mailman

NOTE: The canonical version of this style guide can be found at:

http://barry.warsaw.us/software/STYLEGUIDE.txt

This document contains a style guide for Python programming, as used in GNU
Mailman. PEP 8 [http://www.python.org/peps/pep-0008.html] is the basis for this style guide so it’s recommendations
should be followed except for the differences outlined here. This document
assumes the use of Python 3.

	After file comments (e.g. license block), add an __all__ section that
names, one-per-line, all the public names exported by this module. See the
GNU Mailman Python template [https://gitlab.com/mailman/mailman/blob/master/template.py] as an example.

	Imports are always put at the top of the file, just after any module
comments and docstrings, and before module globals and constants, but after
any __all__ definitions.

Imports should be grouped, with the order being:

	non-from imports, grouped from shorted module name to longest module
name, with ties being broken by alphabetical order.

	from-imports grouped alphabetically.

	In general, there should be one class per module. This is not a
hard-and-fast rule. Keep files small, but it’s okay to group related code
together. List everything exported from the module in the __all__.

	Right hanging comments are discouraged, in favor of preceding comments.
E.g. bad:

foo = blarzigop(bar) # if you don't blarzigop it, it'll shlorp

Good:

If you don't blarzigop it, it'll shlorp.
foo = blarzigop(bar)

Comments should always be complete sentences, with proper capitalization and
full stops at the end.

	Major sections of code in a module should be separated by form feed
characters (e.g. ^L – that’s a single character control-L not two
characters). This helps with Emacs navigation.

Put a ^L before module-level functions, before class definitions, before
big blocks of constants which follow imports, and any place else that would
be convenient to jump to. Always put two blank lines before a ^L.

	Put two blank lines between any top level construct or block of code
(e.g. after import blocks). Put only one blank line between methods in a
class. No blank lines between the class definition and the first method in
the class. No blank lines between a class/method and its docstrings.

	Try to minimize the vertical whitespace in a class or function. If you’re
inclined to separate stanzas of code for readability, consider putting a
comment in describing what the next stanza’s purpose is. Don’t put stupid
or obvious comments in just to avoid vertical whitespace though.

	Unless internal quote characters would mess things up, the general rule is
that single quotes should be used for short strings, double quotes for
triple-quoted multi-line strings and docstrings. E.g.:

foo = 'a foo thing'
warn = "Don't mess things up"
notice = """Our three chief weapons are:
 - surprise
 - deception
 - an almost fanatical devotion to the pope
 """

	Write docstrings for modules, functions, classes, and methods. Docstrings
can be omitted for special methods (e.g. __init__() or __str__()) where the
meaning is obvious.

	PEP 257 describes good docstrings conventions. Note that most importantly,
the “”” that ends a multiline docstring should be on a line by itself, e.g.:

"""Return a foobang

Optional plotz says to frobnicate the bizbaz first.
"""

	For one liner docstrings, keep the closing “”” on the same line.

	fill-column for docstrings should be 78.

	When testing the emptiness of sequences, use if len(seq) == 0 instead of
relying on the falseness of empty sequences. However, if a variable can be
one of several false values, it’s okay to just use if seq, though a
preceding comment is usually in order.

	Always decide whether a class’s methods and instance variables should be
public or non-public.

Single leading underscores are generally preferred for non-public
attributes. Use double leading underscores only in classes designed for
inheritance to ensure that truly private attributes will never name clash.
These should be rare.

Public attributes should have no leading or trailing underscores unless they
conflict with reserved words, in which case, a single trailing underscore is
preferable to a leading one, or a corrupted spelling, e.g. class_ rather
than klass.

GNU Mailman Acknowledgments

Copyright (C) 1998-2016 by the Free Software Foundation, Inc.

Governance

GNU Mailman was invented by John Viega. Barry Warsaw is the current project
leader. Aurélien Bompard leads HyperKitty and bundler development. Florian
Fuchs leads Postorius development. Development of mailman.client is a group
effort.

All project decisions are made by consensus via the Mailman Cabal, er,
Steering Committee which can be contacted directly via mailman-cabal@python.org

Core Developers

The following folks are or have been core developers of Mailman (in reverse
alphabetical order):

	Abhilash Raj, Mailman’s Youngest Core Dev

	Aurélien Bompard, Pizzaman

	Barry Warsaw, Mailman’s yappy guard dog

	Florian Fuchs

	Harald Meland, Norse Mailman

	John Viega, Mailman’s inventor

	Ken Manheimer, Mailman’s savior

	Mark Sapiro, Mailman’s compulsive responder

	Scott Cotton, Cookie-Monster

	Stephen J. Turnbull, Standards Otaku

	Terri Oda

	Thomas Wouters, Mailman’s Dutch treat

	Tokio Kikuchi (RIP), Mailman’s weatherman

Copyright Assignees

Here is the list of other contributors who have donated large bits of
code, and have assigned copyright for contributions to the FSF:

	Juan Carlos Rey Anaya

	Andrija Arsic

	Richard Barrett

	Jimmy Bergman

	Stephan Berndts

	Norbert Bollow

	Joe Dugan

	Ethan Mindlace Fremen

	Ben Gertzfield

	Victoriano Giralt

	Stephen Goss

	Mads Kiilerich

	Cedric Knight

	Patrick Ben Koetter

	The Dragon De Monsyne

	Les Niles

	Reed O’Brien

	Terri Oda

	Simone Piunno

	Claudia Schmidt

	Andreas Schosser

	Richard Wackerbarth

Special Thanks

Very special thanks to Andrija Arsic for his winning new GNU Mailman logos.

Thanks also go to the following people for their important contributions in
other aspects of the Mailman project:

	Brad Knowles

	JC Dill

	Clytie Siddall

Thanks also to Dragon for his original Mailman logo contribution, and to Terri
Oda for the neat shortcut icon and the member documentation.

Control.com sponsored development of several Mailman 2.1 features, including
topics filters, external membership sources, and initial virtual mailing list
support. My thanks especially to Dan Pierson and Ken Crater from Control.com.

Here is the list of other people who have contributed useful ideas,
suggestions, bug fixes, testing, etc., or who have been very helpful in
answering questions on mailman-users. Please let me know if you have been
left off the list!

	David Abrahams

	William Ahern

	Terry Allen

	Jose Paulo Moitinho de Almeida

	Sven Anderson

	Matthias Andree

	Anton Antonov

	Mike Avery

	Stonewall Ballard

	Moreno Baricevic

	Jimmy Bergman

	Jeff Berliner

	Stuart Bishop

	David Blomquist

	Bojan

	Søren Bondrup

	Grant Bowman

	Alessio Bragadini

	J. D. Bronson

	Stan Bubrouski

	Daniel Buchmann

	Ben Burnett

	Ted Cabeen

	Mentor Cana

	John Carnes

	Julio A. Cartaya

	Claudio Cattazzo

	Donn Cave

	David Champion

	Hye-Shik Chang

	Eric D. Christensen

	Tom G. Christensen

	Paul Cox

	Stefaniu Criste

	Robert Daeley

	Ned Dawes

	Emilio Delgado

	John Dennis

	Stefan Divjak

	Maximillian Dornseif

	Fred Drake

	Maxim Dzumanenko

	Piarres Beobide Egaña

	Rob Ellis

	Kerem Erkan

	Fil

	Patrick Finnerty

	Bob Fleck

	Erik Forsberg

	Darrell Fuhriman

	Robert Garrigós

	Carson Gaspar

	Pascal GEORGE

	Vadim Getmanshchuk

	David Gibbs

	Dmitri I GOULIAEV

	Terry Grace

	Federico Grau

	Pekka Haavisto

	David Habben

	Stig Hackvan

	Jeff Hahn

	Terry Hardie

	Paul Hebble

	Tollef Fog Heen

	Peer Heinlein

	James Henstridge

	Walter Hop

	Bert Hubert

	Henny Huisman

	Jeremy Hylton

	Ikeda Soji

	Rostyk Ivantsiv

	Ron Jarrell

	Matthias Juchem

	Tamito KAJIYAMA

	Nino Katic

	SHIGENO Kazutaka

	Ashley M. Kirchner

	Matthias Klose

	Harald Koch

	Patrick Koetter

	Eddie Kohler

	Chris Kolar

	Uros Kositer

	Andrew Kuchling

	Ricardo Kustner

	L’homme Moderne

	Sylvain Langlade

	Ed Lau

	J C Lawrence

	Greg Lindahl

	Christopher P. Lindsey

	Martin von Loewis

	Dario Lopez-Kästen

	Tanner Lovelace

	Jay Luker

	Gergely Madarasz

	Luca Maranzano

	John A. Martin

	Andrew Martynov

	Jason R. Mastaler

	Michael Mclay

	Michael Meltzer

	Marc MERLIN

	Nigel Metheringham

	Dan Mick

	Garey Mills

	Martin Mokrejs

	Michael Fischer v. Mollard

	David Martínez Moreno

	Dirk Mueller

	Jonas Muerer

	Erik Myllymaki

	Balazs Nagy

	Moritz Naumann

	Dale Newfield

	Hrvoje Niksic

	Les Niles

	Mike Noyes

	David B. O’Donnell

	Timothy O’Malley

	“office”

	Dan Ohnesorg

	Gerald Oskoboiny

	Eva Österlind

	Toni Panadès

	Jon Parise

	Chris Pepper

	Tim Peters

	Joe Peterson

	PieterB

	Rodolfo Pilas

	Skye Poier

	Martin Pool

	Don Porter

	Francesco Potortì

	Bob Puff

	Abhilash Raj

	Michael Ranner

	John Read

	Sean Reifschneider

	Christian Reis

	Ademar de Souza Reis, Jr.

	Bernhard Reiter

	Stephan Richter

	Tristan Roddis

	Heiko Rommel

	Luigi Rosa

	Guido van Rossum

	Nicholas Russo

	Chris Ryan

	Cabel Sasser

	Bartosz Sawicki

	Kai Schaetzl

	Karoly Segesdi

	Gleydson Mazioli da Silva

	Pasi Sjöholm

	Chris Snell

	Mikhail Sobolev

	David Soto

	Greg Stein

	Dale Stimson

	Students of HIT <mailman-cn@mail.cs.hit.edu.cn>

	Alexander Sulfrian

	Szabolcs Szigeti

	Vizi Szilard

	David T-G

	Owen Taylor

	Danny Terweij

	Jim Tittsler

	Todd (Freedom Lover)

	Roger Tsang

	Chuq Von Rospach

	Jens Vagelpohl

	Valia V. Vaneeva

	Anti Veeranna

	Todd Vierling

	Bill Wagner

	Greg Ward

	Mark Weaver

	Kathleen Webb

	Florian Weimer

	Ousmane Wilane

	Dan Wilder

	Seb Wills

	Dai Xiaoguang

	Ping Yeh

	YASUDA Yukihiro

	Michael Yount

	Blair Zajac

	Mikhail Zabaluev

	Noam Zeilberger

	Daniel Zeiss

	Todd Zullinger

And everyone else on mailman-developers@python.org and
mailman-users@python.org! Thank you, all.

Index

Banning email addresses

Email addresses can be banned from ever subscribing, either to a specific
mailing list or globally within the Mailman system. Both explicit email
addresses and email address patterns can be banned.

Bans are managed through the Ban Manager. There are ban managers for
specific lists, and there is a global ban manager. To get access to the
global ban manager, adapt None.

>>> from mailman.interfaces.bans import IBanManager
>>> global_bans = IBanManager(None)

At first, no email addresses are banned globally.

>>> global_bans.is_banned('anne@example.com')
False

To get a list-specific ban manager, adapt the mailing list object.

>>> mlist = create_list('test@example.com')
>>> test_bans = IBanManager(mlist)

There are no bans for this particular list.

>>> test_bans.is_banned('bart@example.com')
False

Specific bans

An email address can be banned from a specific mailing list by adding a ban to
the list’s ban manager.

>>> test_bans.ban('cris@example.com')
>>> test_bans.is_banned('cris@example.com')
True
>>> test_bans.is_banned('bart@example.com')
False

However, this is not a global ban.

>>> global_bans.is_banned('cris@example.com')
False

Global bans

An email address can be banned globally, so that it cannot be subscribed to
any mailing list.

>>> global_bans.ban('dave@example.com')

Because there is a global ban, Dave is also banned from the mailing list.

>>> test_bans.is_banned('dave@example.com')
True

Even when a new mailing list is created, Dave is still banned from this list
because of his global ban.

>>> sample = create_list('sample@example.com')
>>> sample_bans = IBanManager(sample)
>>> sample_bans.is_banned('dave@example.com')
True

Dave is of course banned globally.

>>> global_bans.is_banned('dave@example.com')
True

Cris however is not banned globally.

>>> global_bans.is_banned('cris@example.com')
False

Even though Cris is not banned globally, we can add a global ban for her.

>>> global_bans.ban('cris@example.com')
>>> global_bans.is_banned('cris@example.com')
True

Cris is now banned from all mailing lists.

>>> test_bans.is_banned('cris@example.com')
True
>>> sample_bans.is_banned('cris@example.com')
True

We can remove the global ban to once again just ban her address from just the
test list.

>>> global_bans.unban('cris@example.com')
>>> global_bans.is_banned('cris@example.com')
False
>>> test_bans.is_banned('cris@example.com')
True
>>> sample_bans.is_banned('cris@example.com')
False

Regular expression bans

Entire email address patterns can be banned, both for a specific mailing list
and globally, just as specific addresses can be banned. Use this for example,
when an entire domain is a spam faucet. When using a pattern, the email
address must start with a caret (^).

>>> test_bans.ban('^.*@example.org')

Now, no one from example.org can subscribe to the test mailing list.

>>> test_bans.is_banned('elle@example.org')
True
>>> test_bans.is_banned('eperson@example.org')
True

example.com addresses are not banned.

>>> test_bans.is_banned('elle@example.com')
False

example.org addresses are not banned globally, nor for any other mailing
list.

>>> sample_bans.is_banned('elle@example.org')
False
>>> global_bans.is_banned('elle@example.org')
False

Of course, we can ban everyone from example.org globally too.

>>> global_bans.ban('^.*@example.org')
>>> sample_bans.is_banned('elle@example.org')
True
>>> global_bans.is_banned('elle@example.org')
True

We can remove the mailing list ban on the pattern, though the global ban will
still be in place.

>>> test_bans.unban('^.*@example.org')
>>> test_bans.is_banned('elle@example.org')
True
>>> sample_bans.is_banned('elle@example.org')
True
>>> global_bans.is_banned('elle@example.org')
True

But once the global ban is removed, everyone from example.org can subscribe to
the mailing lists.

>>> global_bans.unban('^.*@example.org')
>>> test_bans.is_banned('elle@example.org')
False
>>> sample_bans.is_banned('elle@example.org')
False
>>> global_bans.is_banned('elle@example.org')
False

Adding and removing bans

It is not an error to add a ban more than once. These are just ignored.

>>> test_bans.ban('fred@example.com')
>>> test_bans.ban('fred@example.com')
>>> test_bans.is_banned('fred@example.com')
True

Nor is it an error to remove a ban more than once.

>>> test_bans.unban('fred@example.com')
>>> test_bans.unban('fred@example.com')
>>> test_bans.is_banned('fred@example.com')
False

Bounces

An important feature of Mailman is automatic bounce processing.

Bounces, or message rejection

Mailman can bounce messages back to the original sender. This is essentially
equivalent to rejecting the message with notification. Mailing lists can
bounce a message with an optional error message.

>>> mlist = create_list('text@example.com')

Any message can be bounced.

>>> msg = message_from_string("""\
... To: text@example.com
... From: aperson@example.com
... Subject: Something important
...
... I sometimes say something important.
... """)

Bounce a message by passing in the original message, and an optional error
message. The bounced message ends up in the virgin queue, awaiting sending
to the original message author.

>>> from mailman.app.bounces import bounce_message
>>> bounce_message(mlist, msg)
>>> from mailman.testing.helpers import get_queue_messages
>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> print(items[0].msg.as_string())
Subject: Something important
From: text-owner@example.com
To: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="..."
Message-ID: ...
Date: ...
Precedence: bulk
<BLANKLINE>
--...
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
<BLANKLINE>
[No bounce details are available]
--...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
To: text@example.com
From: aperson@example.com
Subject: Something important
<BLANKLINE>
I sometimes say something important.
<BLANKLINE>
--...--

An error message can be given when the message is bounced, and this will be
included in the payload of the text/plain part. The error message must be
passed in as an instance of a RejectMessage exception.

>>> from mailman.core.errors import RejectMessage
>>> error = RejectMessage("This wasn't very important after all.")
>>> bounce_message(mlist, msg, error)
>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> print(items[0].msg.as_string())
Subject: Something important
From: text-owner@example.com
To: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="..."
Message-ID: ...
Date: ...
Precedence: bulk
<BLANKLINE>
--...
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
<BLANKLINE>
This wasn't very important after all.
--...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
To: text@example.com
From: aperson@example.com
Subject: Something important
<BLANKLINE>
I sometimes say something important.
<BLANKLINE>
--...--

Hooks

Mailman defines two initialization hooks, one which is run early in the
initialization process and the other run late in the initialization process.
Hooks name an importable callable so it must be accessible on sys.path.

>>> import os, sys
>>> from mailman.config import config
>>> config_directory = os.path.dirname(config.filename)
>>> sys.path.insert(0, config_directory)

>>> hook_path = os.path.join(config_directory, 'hooks.py')
>>> with open(hook_path, 'w') as fp:
... print("""\
... counter = 1
... def pre_hook():
... global counter
... print('pre-hook:', counter)
... counter += 1
...
... def post_hook():
... global counter
... print('post-hook:', counter)
... counter += 1
... """, file=fp)
>>> fp.close()

Pre-hook

We can set the pre-hook in the configuration file.

>>> config_path = os.path.join(config_directory, 'hooks.cfg')
>>> with open(config_path, 'w') as fp:
... print("""\
... [meta]
... extends: test.cfg
...
... [mailman]
... pre_hook: hooks.pre_hook
... """, file=fp)

The hooks are run in the second and third steps of initialization. However,
we can’t run those initialization steps in process, so call a command line
script that will produce no output to force the hooks to run.

>>> import subprocess
>>> from mailman.testing.layers import ConfigLayer
>>> def call():
... exe = os.path.join(os.path.dirname(sys.executable), 'mailman')
... env = dict(MAILMAN_CONFIG_FILE=config_path,
... PYTHONPATH=config_directory)
... test_cfg = os.environ.get('MAILMAN_EXTRA_TESTING_CFG')
... if test_cfg is not None:
... env['MAILMAN_EXTRA_TESTING_CFG'] = test_cfg
... proc = subprocess.Popen(
... [exe, 'lists', '--domain', 'ignore', '-q'],
... cwd=ConfigLayer.root_directory, env=env,
... universal_newlines=True,
... stdout=subprocess.PIPE, stderr=subprocess.PIPE)
... stdout, stderr = proc.communicate()
... assert proc.returncode == 0, stderr
... print(stdout)

>>> call()
pre-hook: 1

>>> os.remove(config_path)

Post-hook

We can set the post-hook in the configuration file.

>>> with open(config_path, 'w') as fp:
... print("""\
... [meta]
... extends: test.cfg
...
... [mailman]
... post_hook: hooks.post_hook
... """, file=fp)

>>> call()
post-hook: 1

>>> os.remove(config_path)

Running both hooks

We can set the pre- and post-hooks in the configuration file.

>>> with open(config_path, 'w') as fp:
... print("""\
... [meta]
... extends: test.cfg
...
... [mailman]
... pre_hook: hooks.pre_hook
... post_hook: hooks.post_hook
... """, file=fp)

>>> call()
pre-hook: 1
post-hook: 2

Application level list life cycle

The low-level way to create and delete a mailing list is to use the
IListManager interface. This interface simply adds or removes the
appropriate database entries to record the list’s creation.

There is a higher level interface for creating and deleting mailing lists
which performs additional tasks such as:

	validating the list’s posting address (which also serves as the list’s
fully qualified name);

	ensuring that the list’s domain is registered;

	applying a list style to the new list;

	creating and assigning list owners;

	notifying watchers of list creation;

	creating ancillary artifacts (such as the list’s on-disk directory)

Creating a list with owners

You can also specify a list of owner email addresses. If these addresses are
not yet known, they will be registered, and new users will be linked to them.

>>> owners = [
... 'aperson@example.com',
... 'bperson@example.com',
... 'cperson@example.com',
... 'dperson@example.com',
...]

>>> ant = create_list('ant@example.com', owners)
>>> dump_list(address.email for address in ant.owners.addresses)
aperson@example.com
bperson@example.com
cperson@example.com
dperson@example.com

None of the owner addresses are verified.

>>> any(address.verified_on is not None
... for address in ant.owners.addresses)
False

However, all addresses are linked to users.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)
>>> for address in owners:
... user = user_manager.get_user(address)
... print(int(user.user_id.int), list(user.addresses)[0])
1 aperson@example.com
2 bperson@example.com
3 cperson@example.com
4 dperson@example.com

If you create a mailing list with owner addresses that are already known to
the system, they won’t be created again.

>>> bee = create_list('bee@example.com', owners)
>>> from operator import attrgetter
>>> for user in sorted(bee.owners.users, key=attrgetter('user_id')):
... print(int(user.user_id.int), list(user.addresses)[0])
1 aperson@example.com
2 bperson@example.com
3 cperson@example.com
4 dperson@example.com

Deleting a list

Removing a mailing list deletes the list, all its subscribers, and any related
artifacts.

>>> from mailman.app.lifecycle import remove_list
>>> remove_list(bee)

>>> from mailman.interfaces.listmanager import IListManager
>>> print(getUtility(IListManager).get('bee@example.com'))
None

We should now be able to completely recreate the mailing list.

>>> buzz = create_list('bee@example.com', owners)
>>> dump_list(address.email for address in bee.owners.addresses)
aperson@example.com
bperson@example.com
cperson@example.com
dperson@example.com

Messages

Mailman has its own Message classes, derived from the standard
email.message.Message class, but providing additional useful methods.

User notifications

When Mailman needs to send a message to a user, it creates a
UserNotification instance, and then calls the .send() method on this
object. This method requires a mailing list instance.

>>> mlist = create_list('test@example.com')

The UserNotification constructor takes the recipient address, the sender
address, an optional subject, optional body text, and optional language.

>>> from mailman.email.message import UserNotification
>>> msg = UserNotification(
... 'aperson@example.com',
... 'test@example.com',
... 'Something you need to know',
... 'I needed to tell you this.')
>>> msg.send(mlist)

The message will end up in the virgin queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Something you need to know
From: test@example.com
To: aperson@example.com
Message-ID: ...
Date: ...
Precedence: bulk
<BLANKLINE>
I needed to tell you this.

The message above got a Precedence: bulk header added by default. If the
message we’re sending already has a Precedence: header, it shouldn’t be
changed.

>>> del msg['precedence']
>>> msg['Precedence'] = 'list'
>>> msg.send(mlist)

Again, the message will end up in the virgin queue but with the original
Precedence: header.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg['precedence'])
list

Sometimes we want to send the message without a Precedence: header such as
when we send a probe message.

>>> del msg['precedence']
>>> msg.send(mlist, add_precedence=False)

Again, the message will end up in the virgin queue but without the
Precedence: header.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg['precedence'])
None

However, if the message already has a Precedence: header, setting the
precedence=False argument will have no effect.

>>> msg['Precedence'] = 'junk'
>>> msg.send(mlist, add_precedence=False)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg['precedence'])
junk

Application level moderation

At an application level, moderation involves holding messages and membership
changes for moderator approval. This utilizes the lower level interface for list-centric moderation requests.

Moderation is always mailing list-centric.

>>> mlist = create_list('ant@example.com')
>>> mlist.preferred_language = 'en'
>>> mlist.display_name = 'A Test List'
>>> mlist.admin_immed_notify = False

We’ll use the lower level API for diagnostic purposes.

>>> from mailman.interfaces.requests import IListRequests
>>> requests = IListRequests(mlist)

Message moderation

Holding messages

Anne posts a message to the mailing list, but she is not a member of the list,
so the message is held for moderator approval.

>>> msg = message_from_string("""\
... From: anne@example.org
... To: ant@example.com
... Subject: Something important
... Message-ID: <aardvark>
...
... Here's something important about our mailing list.
... """)

Holding a message means keeping a copy of it that a moderator must approve
before the message is posted to the mailing list. To hold the message, the
message, its metadata, and a reason for the hold must be provided. In this
case, we won’t include any additional metadata.

>>> from mailman.app.moderator import hold_message
>>> hold_message(mlist, msg, {}, 'Needs approval')
1

We can also hold a message with some additional metadata.

>>> msg = message_from_string("""\
... From: bart@example.org
... To: ant@example.com
... Subject: Something important
... Message-ID: <badger>
...
... Here's something important about our mailing list.
... """)
>>> msgdata = dict(sender='anne@example.com', approved=True)

>>> hold_message(mlist, msg, msgdata, 'Feeling ornery')
2

Disposing of messages

The moderator can select one of several dispositions:

	discard - throw the message away.

	reject - bounces the message back to the original author.

	defer - defer any action on the message (continue to hold it)

	accept - accept the message for posting.

The most trivial is to simply defer a decision for now.

>>> from mailman.interfaces.action import Action
>>> from mailman.app.moderator import handle_message
>>> handle_message(mlist, 1, Action.defer)

This leaves the message in the requests database.

>>> key, data = requests.get_request(1)
>>> print(key)
<aardvark>

The moderator can also discard the message.

>>> handle_message(mlist, 1, Action.discard)
>>> print(requests.get_request(1))
None

The message can be rejected, which bounces the message back to the original
sender.

>>> handle_message(mlist, 2, Action.reject, 'Off topic')

The message is no longer available in the requests database.

>>> print(requests.get_request(2))
None

And there is one message in the virgin queue - the rejection notice.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Request to mailing list "A Test List" rejected
From: ant-bounces@example.com
To: bart@example.org
...
<BLANKLINE>
Your request to the ant@example.com mailing list
<BLANKLINE>
 Posting of your message titled "Something important"
<BLANKLINE>
has been rejected by the list moderator. The moderator gave the
following reason for rejecting your request:
<BLANKLINE>
"Off topic"
<BLANKLINE>
Any questions or comments should be directed to the list administrator
at:
<BLANKLINE>
 ant-owner@example.com
<BLANKLINE>

The bounce gets sent to the original sender.

>>> for recipient in sorted(messages[0].msgdata['recipients']):
... print(recipient)
bart@example.org

Or the message can be approved.

>>> msg = message_from_string("""\
... From: cris@example.org
... To: ant@example.com
... Subject: Something important
... Message-ID: <caribou>
...
... Here's something important about our mailing list.
... """)
>>> id = hold_message(mlist, msg, {}, 'Needs approval')
>>> handle_message(mlist, id, Action.accept)

This places the message back into the incoming queue for further processing,
however the message metadata indicates that the message has been approved.

>>> messages = get_queue_messages('pipeline')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
From: cris@example.org
To: ant@example.com
Subject: Something important
...

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
approved : True
moderator_approved: True
version : 3

Forwarding the message

The message can be forwarded to another address. This is helpful for getting
the message into the inbox of one of the moderators.

>>> msg = message_from_string("""\
... From: elly@example.org
... To: ant@example.com
... Subject: Something important
... Message-ID: <elephant>
...
... Here's something important about our mailing list.
... """)
>>> req_id = hold_message(mlist, msg, {}, 'Needs approval')
>>> handle_message(mlist, req_id, Action.discard,
... forward=['zack@example.com'])

The forwarded message is in the virgin queue, destined for the moderator.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
Subject: Forward of moderated message
From: ant-bounces@example.com
To: zack@example.com
...

>>> for recipient in sorted(messages[0].msgdata['recipients']):
... print(recipient)
zack@example.com

Holding subscription requests

For closed lists, subscription requests will also be held for moderator
approval. In this case, several pieces of information related to the
subscription must be provided, including the subscriber’s address and real
name, what kind of delivery option they are choosing and their preferred
language.

>>> from mailman.app.moderator import hold_subscription
>>> from mailman.interfaces.member import DeliveryMode
>>> from mailman.interfaces.subscriptions import RequestRecord
>>> req_id = hold_subscription(
... mlist,
... RequestRecord('fred@example.org', 'Fred Person',
... DeliveryMode.regular, 'en'))

Disposing of membership change requests

Just as with held messages, the moderator can select one of several
dispositions for this membership change request. The most trivial is to
simply defer a decision for now.

>>> from mailman.app.moderator import handle_subscription
>>> handle_subscription(mlist, req_id, Action.defer)
>>> requests.get_request(req_id) is not None
True

The held subscription can also be discarded.

>>> handle_subscription(mlist, req_id, Action.discard)
>>> print(requests.get_request(req_id))
None

Gwen tries to subscribe to the mailing list, but…

>>> req_id = hold_subscription(
... mlist,
... RequestRecord('gwen@example.org', 'Gwen Person',
... DeliveryMode.regular, 'en'))

…her request is rejected…

>>> handle_subscription(
... mlist, req_id, Action.reject, 'This is a closed list')
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

…and she receives a rejection notice.

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Request to mailing list "A Test List" rejected
From: ant-bounces@example.com
To: gwen@example.org
...
Your request to the ant@example.com mailing list
<BLANKLINE>
 Subscription request
<BLANKLINE>
has been rejected by the list moderator. The moderator gave the
following reason for rejecting your request:
<BLANKLINE>
"This is a closed list"
...

The subscription can also be accepted. This subscribes the address to the
mailing list.

>>> mlist.send_welcome_message = False
>>> req_id = hold_subscription(
... mlist,
... RequestRecord('herb@example.org', 'Herb Person',
... DeliveryMode.regular, 'en'))

The moderators accept the subscription request.

>>> handle_subscription(mlist, req_id, Action.accept)

And now Herb is a member of the mailing list.

>>> print(mlist.members.get_member('herb@example.org').address)
Herb Person <herb@example.org>

Holding unsubscription requests

Some lists require moderator approval for unsubscriptions. In this case, only
the unsubscribing address is required.

Herb now wants to leave the mailing list, but his request must be approved.

>>> from mailman.app.moderator import hold_unsubscription
>>> req_id = hold_unsubscription(mlist, 'herb@example.org')

As with subscription requests, the unsubscription request can be deferred.

>>> from mailman.app.moderator import handle_unsubscription
>>> handle_unsubscription(mlist, req_id, Action.defer)
>>> print(mlist.members.get_member('herb@example.org').address)
Herb Person <herb@example.org>

The held unsubscription can also be discarded, and the member will remain
subscribed.

>>> handle_unsubscription(mlist, req_id, Action.discard)
>>> print(mlist.members.get_member('herb@example.org').address)
Herb Person <herb@example.org>

The request can be rejected, in which case a message is sent to the member,
and the person remains a member of the mailing list.

>>> req_id = hold_unsubscription(mlist, 'herb@example.org')
>>> handle_unsubscription(mlist, req_id, Action.reject, 'No can do')
>>> print(mlist.members.get_member('herb@example.org').address)
Herb Person <herb@example.org>

Herb gets a rejection notice.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Request to mailing list "A Test List" rejected
From: ant-bounces@example.com
To: herb@example.org
...
Your request to the ant@example.com mailing list

 Unsubscription request

has been rejected by the list moderator. The moderator gave the
following reason for rejecting your request:

"No can do"
...

The unsubscription request can also be accepted. This removes the member from
the mailing list.

>>> req_id = hold_unsubscription(mlist, 'herb@example.org')
>>> mlist.send_goodbye_message = False
>>> handle_unsubscription(mlist, req_id, Action.accept)
>>> print(mlist.members.get_member('herb@example.org'))
None

Notifications

Membership change requests

Usually, the list administrators want to be notified when there are membership
change requests they need to moderate. These notifications are sent when the
list is configured to send them.

>>> mlist.admin_immed_notify = True

Iris tries to subscribe to the mailing list.

>>> req_id = hold_subscription(mlist,
... RequestRecord('iris@example.org', 'Iris Person',
... DeliveryMode.regular, 'en'))

There’s now a message in the virgin queue, destined for the list owner.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: New subscription request to A Test List from iris@example.org
From: ant-owner@example.com
To: ant-owner@example.com
...
Your authorization is required for a mailing list subscription request
approval:
<BLANKLINE>
 For: iris@example.org
 List: ant@example.com

Similarly, the administrator gets notifications on unsubscription requests.
Jeff is a member of the mailing list, and chooses to unsubscribe.

>>> unsub_req_id = hold_unsubscription(mlist, 'jeff@example.org')
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: New unsubscription request from A Test List by jeff@example.org
From: ant-owner@example.com
To: ant-owner@example.com
...
Your authorization is required for a mailing list unsubscription
request approval:
<BLANKLINE>
 By: jeff@example.org
 From: ant@example.com
...

Membership changes

When a new member request is accepted, the mailing list administrators can
receive a membership change notice.

>>> mlist.admin_notify_mchanges = True
>>> mlist.admin_immed_notify = False
>>> handle_subscription(mlist, req_id, Action.accept)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: A Test List subscription notification
From: noreply@example.com
To: ant-owner@example.com
...
Iris Person <iris@example.org> has been successfully subscribed to A
Test List.

Similarly when an unsubscription request is accepted, the administrators can
get a notification.

>>> req_id = hold_unsubscription(mlist, 'iris@example.org')
>>> handle_unsubscription(mlist, req_id, Action.accept)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: A Test List unsubscription notification
From: noreply@example.com
To: ant-owner@example.com
...
Iris Person <iris@example.org> has been removed from A Test List.

Welcome messages

When a member is subscribed to the mailing list via moderator approval, she
can get a welcome message.

>>> mlist.admin_notify_mchanges = False
>>> mlist.send_welcome_message = True
>>> req_id = hold_subscription(mlist,
... RequestRecord('kate@example.org', 'Kate Person',
... DeliveryMode.regular, 'en'))
>>> handle_subscription(mlist, req_id, Action.accept)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Welcome to the "A Test List" mailing list
From: ant-request@example.com
To: Kate Person <kate@example.org>
...
Welcome to the "A Test List" mailing list!
...

Goodbye messages

Similarly, when the member’s unsubscription request is approved, she’ll get a
goodbye message.

>>> mlist.send_goodbye_message = True
>>> req_id = hold_unsubscription(mlist, 'kate@example.org')
>>> handle_unsubscription(mlist, req_id, Action.accept)
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: You have been unsubscribed from the A Test List mailing list
From: ant-bounces@example.com
To: kate@example.org
...

Pipelines

Pipelines process messages that have been accepted for posting, applying any
modifications and also sending copies of the message to the archives, digests,
NNTP, and outgoing queues. Pipelines are named and consist of a sequence of
handlers, each of which is applied in turn. Unlike rules and chains, there is
no way to stop a pipeline from processing the message once it’s started.

>>> mlist = create_list('test@example.com')
>>> print(mlist.posting_pipeline)
default-posting-pipeline
>>> from mailman.core.pipelines import process

For the purposes of these examples, we’ll enable just one archiver.

>>> from mailman.interfaces.mailinglist import IListArchiverSet
>>> for archiver in IListArchiverSet(mlist).archivers:
... archiver.is_enabled = (archiver.name == 'mhonarc')

Processing a message

Messages hit the pipeline after they’ve been accepted for posting.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
... X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
...
... First post!
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata, mlist.posting_pipeline)

The message has been modified with additional headers, footer decorations,
etc.

>>> print(msg.as_string())
From: aperson@example.com
To: test@example.com
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
X-Mailman-Version: ...
Precedence: list
Subject: [Test] My first post
List-Id: <test.example.com>
Archived-At: <http://lists.example.com/.../4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB>
List-Archive: <http://lists.example.com/archives/test@example.com>
List-Help: <mailto:test-request@example.com?subject=help>
List-Post: <mailto:test@example.com>
List-Subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
List-Unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
<BLANKLINE>
First post!

Test mailing list
test@example.com
http://lists.example.com/listinfo/test@example.com
<BLANKLINE>

The message metadata has information about recipients and other stuff.
However there are currently no recipients for this message.

>>> dump_msgdata(msgdata)
original_sender : aperson@example.com
original_subject: My first post
recipients : set()
stripped_subject: My first post

After pipeline processing, the message is now sitting in various other
processing queues.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('archive')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
X-Mailman-Version: ...
Precedence: list
Subject: [Test] My first post
List-Id: <test.example.com>
...

First post!

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
original_sender : aperson@example.com
original_subject: My first post
recipients : set()
stripped_subject: My first post
version : 3

This mailing list is not linked to an NNTP newsgroup, so there’s nothing in
the outgoing nntp queue.

>>> messages = get_queue_messages('nntp')
>>> len(messages)
0

The outgoing queue will hold the copy of the message that will actually get
delivered to end recipients.

>>> messages = get_queue_messages('out')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
X-Mailman-Version: ...
Precedence: list
Subject: [Test] My first post
List-Id: <test.example.com>
...

First post!

Test mailing list
test@example.com
http://lists.example.com/listinfo/test@example.com

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : test.example.com
original_sender : aperson@example.com
original_subject: My first post
recipients : set()
stripped_subject: My first post
version : 3

There’s now one message in the digest mailbox, getting ready to be sent.

>>> from mailman.testing.helpers import digest_mbox
>>> digest = digest_mbox(mlist)
>>> sum(1 for mboxmsg in digest)
1

>>> print(list(digest)[0].as_string())
From: aperson@example.com
To: test@example.com
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
X-Mailman-Version: ...
Precedence: list
Subject: [Test] My first post
List-Id: <test.example.com>
...

First post!

Subscription services

The ISubscriptionService utility provides higher level convenience methods
useful for searching, retrieving, iterating, and removing memberships across
all mailing lists on th esystem. Adding new users is handled by the
IRegistrar interface.

>>> from mailman.interfaces.subscriptions import ISubscriptionService
>>> from zope.component import getUtility
>>> service = getUtility(ISubscriptionService)

You can use the service to get all members of all mailing lists, for any
membership role. At first, there are no memberships.

>>> service.get_members()
[]
>>> sum(1 for member in service)
0
>>> from uuid import UUID
>>> print(service.get_member(UUID(int=801)))
None

Listing members

When there are some members, of any role on any mailing list, they can be
retrieved through the subscription service.

>>> from mailman.app.lifecycle import create_list
>>> ant = create_list('ant@example.com')
>>> bee = create_list('bee@example.com')
>>> cat = create_list('cat@example.com')

Some people become members.

>>> from mailman.interfaces.member import MemberRole
>>> from mailman.testing.helpers import subscribe
>>> anne_1 = subscribe(ant, 'Anne')
>>> anne_2 = subscribe(ant, 'Anne', MemberRole.owner)
>>> bart_1 = subscribe(ant, 'Bart', MemberRole.moderator)
>>> bart_2 = subscribe(bee, 'Bart', MemberRole.owner)
>>> anne_3 = subscribe(cat, 'Anne', email='anne@example.com')
>>> cris_1 = subscribe(cat, 'Cris')

The service can be used to iterate over them.

>>> for member in service.get_members():
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>
<Member: Anne Person <anne@example.com>
 on cat@example.com as MemberRole.member>
<Member: Cris Person <cperson@example.com>
 on cat@example.com as MemberRole.member>

The service can also be used to get the information about a single member.

>>> print(service.get_member(bart_2.member_id))
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>

There is an iteration shorthand for getting all the members.

>>> for member in service:
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>
<Member: Anne Person <anne@example.com>
 on cat@example.com as MemberRole.member>
<Member: Cris Person <cperson@example.com>
 on cat@example.com as MemberRole.member>

Finding members

The subscription service can be used to find memberships based on specific
search criteria. For example, we can find all the mailing lists that Anne is
a member of with her aperson@example.com address.

>>> for member in service.find_members('aperson@example.com'):
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>

There may be no matching memberships.

>>> service.find_members('dave@example.com')
[]

Memberships can also be searched for by user id.

>>> for member in service.find_members(anne_1.user.user_id):
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>

You can find all the memberships for a specific mailing list.

>>> for member in service.find_members(list_id='ant.example.com'):
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>

You can find all the memberships for an address on a specific mailing list,
but you have to give it the list id, not the fqdn listname since the former is
stable but the latter could change if the list is moved.

>>> for member in service.find_members(
... 'bperson@example.com', 'ant.example.com'):
... print(member)
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>

You can find all the memberships for an address with a specific role.

>>> for member in service.find_members(
... list_id='ant.example.com', role=MemberRole.owner):
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>

You can also find a specific membership by all three criteria.

>>> for member in service.find_members(
... 'bperson@example.com', 'bee.example.com', MemberRole.owner):
... print(member)
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>

Removing members

Members can be removed via this service.

>>> len(service.get_members())
6
>>> service.leave('cat.example.com', 'cperson@example.com')
>>> len(service.get_members())
5
>>> for member in service:
... print(member)
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.owner>
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>
<Member: Anne Person <aperson@example.com>
 on ant@example.com as MemberRole.member>
<Member: Bart Person <bperson@example.com>
 on bee@example.com as MemberRole.owner>
<Member: Anne Person <anne@example.com>
 on cat@example.com as MemberRole.member>

System versions

Mailman system information is available through the system object, which
implements the ISystem interface.

>>> from mailman.interfaces.system import ISystem
>>> from mailman.core.system import system
>>> from zope.interface.verify import verifyObject

>>> verifyObject(ISystem, system)
True

The Mailman version is also available via the system object.

>>> print(system.mailman_version)
GNU Mailman ...

The Python version running underneath is also available via the system
object.

The entire python_version string is variable, so this is the best test
we can do.
>>> import sys
>>> system.python_version == sys.version
True

Archivers

Mailman supports pluggable archivers, and it comes with several default
archivers.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: An archived message
... Message-ID: <12345>
... X-Message-ID-Hash: RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE
...
... Here is an archived message.
... """)

Archivers support an interface which provides the RFC 2369 List-Archive:
header, and one that provides a permalink to the specific message object in
the archive. This latter is appropriate for the message footer or for the RFC
5064 Archived-At: header.

If the archiver is not network-accessible, it will return None and the
headers will not be added.

Mailman defines a draft spec for how list servers and archivers can
interoperate.

>>> archivers = {}
>>> from operator import attrgetter
>>> for archiver in sorted(config.archivers, key=attrgetter('name')):
... print(archiver.name)
... print(' ', archiver.list_url(mlist))
... print(' ', archiver.permalink(mlist, msg))
... archivers[archiver.name] = archiver
mail-archive
 http://go.mail-archive.dev/test%40example.com
 http://go.mail-archive.dev/RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE
mhonarc
 http://lists.example.com/.../test@example.com
 http://lists.example.com/.../RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE
prototype
 None
 None

Sending the message to the archiver

The prototype archiver archives messages to a maildir.

>>> import os
>>> archivers['prototype'].archive_message(mlist, msg)
>>> archive_path = os.path.join(
... config.ARCHIVE_DIR, 'prototype', mlist.fqdn_listname, 'new')
>>> len(os.listdir(archive_path))
1

The Mail-Archive.com

The Mail Archive [http://www.mail-archive.com] is a public archiver that can be used to archive message
for free. Mailman comes with a plugin for this archiver; by enabling it
messages to public lists will get sent there automatically.

>>> archiver = archivers['mail-archive']
>>> print(archiver.list_url(mlist))
http://go.mail-archive.dev/test%40example.com
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE

To archive the message, the archiver actually mails the message to a special
address at The Mail Archive. The message gets no header or footer decoration.

>>> from mailman.interfaces.archiver import ArchivePolicy
>>> mlist.archive_policy = ArchivePolicy.public
>>> archiver.archive_message(mlist, msg)

>>> from mailman.runners.outgoing import OutgoingRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> outgoing = make_testable_runner(OutgoingRunner, 'out')
>>> outgoing.run()

>>> from operator import itemgetter
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> print(messages[0].as_string())
From: aperson@example.org
To: test@example.com
Subject: An archived message
Message-ID: <12345>
X-Message-ID-Hash: RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE
X-Peer: 127.0.0.1:...
X-MailFrom: test-bounces@example.com
X-RcptTo: archive@mail-archive.dev

Here is an archived message.

>>> smtpd.clear()

However, if the mailing list is not public, the message will never be archived
at this service.

>>> mlist.archive_policy = ArchivePolicy.private
>>> print(archiver.list_url(mlist))
None
>>> print(archiver.permalink(mlist, msg))
None
>>> archiver.archive_message(mlist, msg)
>>> list(smtpd.messages)
[]

Additionally, this archiver can handle malformed Message-IDs.

>>> from mailman.utilities.email import add_message_hash
>>> mlist.archive_policy = ArchivePolicy.public
>>> del msg['message-id']
>>> del msg['x-message-id-hash']
>>> msg['Message-ID'] = '12345>'
>>> add_message_hash(msg)
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/YJIGBYRWZFG5LZEBQ7NR25B5HBR2BVD6

>>> del msg['message-id']
>>> del msg['x-message-id-hash']
>>> msg['Message-ID'] = '<12345'
>>> add_message_hash(msg)
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/XUFFJNJ2P2WC4NDPQRZFDJMV24POP64B

>>> del msg['message-id']
>>> del msg['x-message-id-hash']
>>> msg['Message-ID'] = '12345'
>>> add_message_hash(msg)
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE

>>> del msg['message-id']
>>> del msg['x-message-id-hash']
>>> add_message_hash(msg)
>>> msg['Message-ID'] = ' 12345 '
>>> add_message_hash(msg)
>>> print(archiver.permalink(mlist, msg))
http://go.mail-archive.dev/RSZCG7IGPHFIRW3EMTVMMDNJMNCVCOLE

MHonArc

A MHonArc [http://www.mhonarc.org] archiver is also available.

>>> archiver = archivers['mhonarc']
>>> print(archiver.name)
mhonarc

Messages sent to a local MHonArc instance are added to its archive via a
subprocess call.

>>> from mailman.testing.helpers import LogFileMark
>>> mark = LogFileMark('mailman.archiver')
>>> archiver.archive_message(mlist, msg)
>>> print('LOG:', mark.readline())
LOG: ... /usr/bin/mhonarc
 -add
 -dbfile .../test@example.com.mbox/mhonarc.db
 -outdir .../mhonarc/test@example.com
 -stderr .../logs/mhonarc
 -stdout .../logs/mhonarc -spammode -umask 022

Mailman runner control

Mailman has a number of runner subprocesses which perform long-running tasks
such as listening on an LMTP port, processing REST API requests, or processing
messages in a queue directory. In normal operation, the mailman command
is used to start, stop and manage the runners. This is just a wrapper around
the real master watcher, which handles runner starting, stopping, exiting, and
log file reopening.

>>> from mailman.testing.helpers import TestableMaster

Start the master in a sub-thread.

>>> master = TestableMaster()
>>> master.start()

There should be a process id for every runner that claims to be startable.

>>> from lazr.config import as_boolean
>>> startable_runners = [conf for conf in config.runner_configs
... if as_boolean(conf.start)]
>>> len(list(master.runner_pids)) == len(startable_runners)
True

Now verify that all the runners are running.

>>> import os

This should produce no output.
>>> for pid in master.runner_pids:
... os.kill(pid, 0)

Stop the master process, which should also kill (and not restart) the child
runner processes.

>>> master.stop()

None of the children are running now.

>>> import errno
>>> for pid in master.runner_pids:
... try:
... os.kill(pid, 0)
... print('Process did not exit:', pid)
... except OSError as error:
... if error.errno == errno.ESRCH:
... # The child process exited.
... pass
... else:
... raise

Moderation

Posts by members and nonmembers are subject to moderation checks during
incoming processing. Different situations can cause such posts to be held for
moderator approval.

>>> mlist = create_list('test@example.com')

Members and nonmembers have a moderation action which can shortcut the
normal moderation checks. The built-in chain does just a few checks first,
such as seeing if the message has a matching Approved: header, or if the
emergency flag has been set on the mailing list, or whether a mail loop has
been detected.

After those, the moderation action for the sender is checked. Members
generally have a defer action, meaning the normal moderation checks are
done, but it is also common for first-time posters to have a hold action,
meaning that their messages are held for moderator approval for a while.

Nonmembers almost always have a hold action, though some mailing lists may
choose to set this default action to discard, meaning their posts would be
immediately thrown away.

Member moderation

Posts by list members are moderated if the member’s moderation action is not
deferred. The default setting for the moderation action of new members is
determined by the mailing list’s settings. By default, a mailing list is not
set to moderate new member postings.

>>> from mailman.testing.helpers import subscribe
>>> member = subscribe(mlist, 'Anne', email='anne@example.com')
>>> member
<Member: Anne Person <anne@example.com> on test@example.com
 as MemberRole.member>
>>> print(member.moderation_action)
Action.defer

In order to find out whether the message is held or accepted, we can subscribe
to Zope events that are triggered on each case.

>>> from mailman.interfaces.chain import ChainEvent
>>> def on_chain(event):
... if isinstance(event, ChainEvent):
... print(event)
... print(event.chain)
... print('Subject:', event.msg['subject'])
... print('Hits:')
... for hit in event.msgdata.get('rule_hits', []):
... print(' ', hit)
... print('Misses:')
... for miss in event.msgdata.get('rule_misses', []):
... print(' ', miss)

Anne’s post to the mailing list runs through the incoming runner’s default
built-in chain. No rules hit and so the message is accepted.

>>> msg = message_from_string("""\
... From: anne@example.com
... To: test@example.com
... Subject: aardvark
...
... This is a test.
... """)

>>> from mailman.core.chains import process
>>> from mailman.testing.helpers import event_subscribers
>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.AcceptEvent ...>
<mailman.chains.accept.AcceptChain ...>
Subject: aardvark
Hits:
Misses:
 approved
 emergency
 loop
 member-moderation
 administrivia
 implicit-dest
 max-recipients
 max-size
 news-moderation
 no-subject
 suspicious-header
 nonmember-moderation

However, when Anne’s moderation action is set to hold, her post is held for
moderator approval.

>>> from mailman.interfaces.action import Action
>>> member.moderation_action = Action.hold

>>> msg = message_from_string("""\
... From: anne@example.com
... To: test@example.com
... Subject: badger
...
... This is a test.
... """)

>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.HoldEvent ...>
<mailman.chains.hold.HoldChain ...>
Subject: badger
Hits:
 member-moderation
Misses:
 approved
 emergency
 loop

The list’s member moderation action can also be set to discard…

>>> member.moderation_action = Action.discard

>>> msg = message_from_string("""\
... From: anne@example.com
... To: test@example.com
... Subject: cougar
...
... This is a test.
... """)

>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.DiscardEvent ...>
<mailman.chains.discard.DiscardChain ...>
Subject: cougar
Hits:
 member-moderation
Misses:
 approved
 emergency
 loop

… or reject.

>>> member.moderation_action = Action.reject

>>> msg = message_from_string("""\
... From: anne@example.com
... To: test@example.com
... Subject: dingo
...
... This is a test.
... """)

>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.RejectEvent ...>
<mailman.chains.reject.RejectChain ...>
Subject: dingo
Hits:
 member-moderation
Misses:
 approved
 emergency
 loop

Nonmembers

Registered nonmembers are handled very similarly to members, the main
difference being that they usually have a default moderation action. This is
how the incoming runner adds sender addresses as nonmembers.

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)
>>> address = user_manager.create_address('bart@example.com')
>>> address
<Address: bart@example.com [not verified] at ...>

When the moderation rule runs on a message from this sender, this address will
be registered as a nonmember of the mailing list, and it will be held for
moderator approval.

>>> msg = message_from_string("""\
... From: bart@example.com
... To: test@example.com
... Subject: elephant
...
... """)

>>> with event_subscribers(on_chain):
... process(mlist, msg, {}, 'default-posting-chain')
<mailman.interfaces.chain.HoldEvent ...>
<mailman.chains.hold.HoldChain ...>
Subject: elephant
Hits:
 nonmember-moderation
Misses:
 approved
 emergency
 loop
 member-moderation
 administrivia
 implicit-dest
 max-recipients
 max-size
 news-moderation
 no-subject
 suspicious-header

>>> nonmember = mlist.nonmembers.get_member('bart@example.com')
>>> nonmember
<Member: bart@example.com on test@example.com as MemberRole.nonmember>
>>> print(nonmember.moderation_action)
Action.hold

Generating aliases

For some mail servers, Mailman must generate data files that are used to hook
Mailman up to the mail server. The details of this differ for each mail
server. Generally these files are automatically kept up-to-date when mailing
lists are created or removed, but you might occasionally need to manually
regenerate the file. The mailman aliases command does this.

>>> class FakeArgs:
... directory = None
>>> from mailman.commands.cli_aliases import Aliases
>>> command = Aliases()

For example, connecting Mailman to Postfix is generally done through the LMTP
protocol. Mailman starts an LMTP server and Postfix delivers messages to
Mailman as an LMTP client. By default this is done through Postfix transport
maps.

Selecting Postfix as the source of incoming messages enables transport map
generation.

>>> config.push('postfix', """
... [mta]
... incoming: mailman.mta.postfix.LMTP
... lmtp_host: lmtp.example.com
... lmtp_port: 24
... """)

Let’s create a mailing list and then display the transport map for it. We’ll
write the appropriate files to a temporary directory.

>>> import os, shutil, tempfile
>>> output_directory = tempfile.mkdtemp()
>>> cleanups.append((shutil.rmtree, output_directory))

>>> FakeArgs.directory = output_directory
>>> mlist = create_list('test@example.com')
>>> command.process(FakeArgs)

For Postfix, there are two files in the output directory.

>>> files = sorted(os.listdir(output_directory))
>>> for file in files:
... print(file)
postfix_domains
postfix_lmtp

The transport map file contains all the aliases for the mailing list.

>>> with open(os.path.join(output_directory, 'postfix_lmtp')) as fp:
... print(fp.read())
AUTOMATICALLY GENERATED BY MAILMAN ON ...
...
test@example.com lmtp:[lmtp.example.com]:24
test-bounces@example.com lmtp:[lmtp.example.com]:24
test-confirm@example.com lmtp:[lmtp.example.com]:24
test-join@example.com lmtp:[lmtp.example.com]:24
test-leave@example.com lmtp:[lmtp.example.com]:24
test-owner@example.com lmtp:[lmtp.example.com]:24
test-request@example.com lmtp:[lmtp.example.com]:24
test-subscribe@example.com lmtp:[lmtp.example.com]:24
test-unsubscribe@example.com lmtp:[lmtp.example.com]:24
<BLANKLINE>

The relay domains file contains a list of all the domains.

>>> with open(os.path.join(output_directory, 'postfix_domains')) as fp:
... print(fp.read())
AUTOMATICALLY GENERATED BY MAILMAN ON ...
...
example.com example.com

Display configuration values

Just like the Postfix command postconf(1) [http://www.postfix.org/postconf.1.html], the mailman conf command
lets you dump one or more Mailman configuration variables to standard output
or a file.

Mailman’s configuration is divided in multiple sections which contain multiple
key-value pairs. The mailman conf command allows you to display a
specific key-value pair, or several key-value pairs.

>>> class FakeArgs:
... key = None
... section = None
... output = None
>>> from mailman.commands.cli_conf import Conf
>>> command = Conf()

To get a list of all key-value pairs of any section, you need to call the
command without any options.

>>> command.process(FakeArgs)
[antispam] header_checks:
...
[logging.bounce] level: info
...
[mailman] site_owner: noreply@example.com
...

You can list all the key-value pairs of a specific section.

>>> FakeArgs.section = 'shell'
>>> command.process(FakeArgs)
[shell] banner: Welcome to the GNU Mailman shell
[shell] prompt: >>>
[shell] use_ipython: no

You can also pass a key and display all key-value pairs matching the given
key, along with the names of the corresponding sections.

>>> FakeArgs.section = None
>>> FakeArgs.key = 'path'
>>> command.process(FakeArgs)
[logging.archiver] path: mailman.log
[logging.bounce] path: bounce.log
[logging.config] path: mailman.log
[logging.database] path: mailman.log
[logging.debug] path: debug.log
[logging.error] path: mailman.log
[logging.fromusenet] path: mailman.log
[logging.http] path: mailman.log
[logging.locks] path: mailman.log
[logging.mischief] path: mailman.log
[logging.root] path: mailman.log
[logging.runner] path: mailman.log
[logging.smtp] path: smtp.log
[logging.subscribe] path: mailman.log
[logging.vette] path: mailman.log

If you specify both a section and a key, you will get the corresponding value.

>>> FakeArgs.section = 'mailman'
>>> FakeArgs.key = 'site_owner'
>>> command.process(FakeArgs)
noreply@example.com

Starting and stopping Mailman

The Mailman daemon processes can be started and stopped from the command
line.

Set up

All we care about is the master process; normally it starts a bunch of
runners, but we don’t care about any of them, so write a test configuration
file for the master that disables all the runners.

>>> from mailman.commands.tests.test_control import make_config

Starting

>>> from mailman.commands.cli_control import Start
>>> start = Start()

>>> class FakeArgs:
... force = False
... run_as_user = True
... quiet = False
... config = make_config()
>>> args = FakeArgs()

Starting the daemons prints a useful message and starts the master watcher
process in the background.

>>> start.process(args)
Starting Mailman's master runner

>>> from mailman.commands.tests.test_control import find_master

The process exists, and its pid is available in a run time file.

>>> pid = find_master()
>>> pid is not None
True

Stopping

You can also stop the master watcher process from the command line, which
stops all the child processes too.

>>> from mailman.commands.cli_control import Stop
>>> stop = Stop()
>>> stop.process(args)
Shutting down Mailman's master runner

>>> from datetime import datetime, timedelta
>>> import os
>>> import time
>>> import errno
>>> def bury_master():
... until = timedelta(seconds=2) + datetime.now()
... while datetime.now() < until:
... time.sleep(0.1)
... try:
... os.kill(pid, 0)
... os.waitpid(pid, os.WNOHANG)
... except OSError as error:
... if error.errno == errno.ESRCH:
... # The process has exited.
... print('Master process went bye bye')
... return
... else:
... raise
... else:
... raise AssertionError('Master process lingered')

>>> bury_master()
Master process went bye bye

XXX We need tests for restart (SIGUSR1) and reopen (SIGHUP).

Command line list creation

A system administrator can create mailing lists by the command line.

>>> class FakeArgs:
... language = None
... owners = []
... quiet = False
... domain = None
... listname = None
... notify = False

You cannot create a mailing list in an unknown domain.

>>> from mailman.commands.cli_lists import Create
>>> command = Create()

>>> class FakeParser:
... def error(self, message):
... print(message)
>>> command.parser = FakeParser()

>>> FakeArgs.listname = ['test@example.xx']
>>> command.process(FakeArgs)
Undefined domain: example.xx

The -d or --domain option is used to tell Mailman to auto-register the
domain. Both the mailing list and domain will be created.

>>> FakeArgs.domain = True
>>> command.process(FakeArgs)
Created mailing list: test@example.xx

Now both the domain and the mailing list exist in the database.

>>> from mailman.interfaces.listmanager import IListManager
>>> from zope.component import getUtility
>>> list_manager = getUtility(IListManager)
>>> list_manager.get('test@example.xx')
<mailing list "test@example.xx" at ...>

>>> from mailman.interfaces.domain import IDomainManager
>>> getUtility(IDomainManager).get('example.xx')
<Domain example.xx, base_url: http://example.xx>

You can also create mailing lists in existing domains without the
auto-creation flag.

>>> FakeArgs.domain = False
>>> FakeArgs.listname = ['test1@example.com']
>>> command.process(FakeArgs)
Created mailing list: test1@example.com

>>> list_manager.get('test1@example.com')
<mailing list "test1@example.com" at ...>

The command can also operate quietly.

>>> FakeArgs.quiet = True
>>> FakeArgs.listname = ['test2@example.com']
>>> command.process(FakeArgs)

>>> mlist = list_manager.get('test2@example.com')
>>> mlist
<mailing list "test2@example.com" at ...>

Setting the owner

By default, no list owners are specified.

>>> dump_list(mlist.owners.addresses)
Empty

But you can specify an owner address on the command line when you create the
mailing list.

>>> FakeArgs.quiet = False
>>> FakeArgs.listname = ['test4@example.com']
>>> FakeArgs.owners = ['foo@example.org']
>>> command.process(FakeArgs)
Created mailing list: test4@example.com

>>> mlist = list_manager.get('test4@example.com')
>>> dump_list(repr(address) for address in mlist.owners.addresses)
<Address: foo@example.org [not verified] at ...>

You can even specify more than one address for the owners.

>>> FakeArgs.owners = ['foo@example.net',
... 'bar@example.net',
... 'baz@example.net']
>>> FakeArgs.listname = ['test5@example.com']
>>> command.process(FakeArgs)
Created mailing list: test5@example.com

>>> mlist = list_manager.get('test5@example.com')
>>> from operator import attrgetter
>>> dump_list(repr(address) for address in mlist.owners.addresses)
<Address: bar@example.net [not verified] at ...>
<Address: baz@example.net [not verified] at ...>
<Address: foo@example.net [not verified] at ...>

Setting the language

You can set the default language for the new mailing list when you create it.
The language must be known to Mailman.

>>> FakeArgs.listname = ['test3@example.com']
>>> FakeArgs.language = 'ee'
>>> command.process(FakeArgs)
Invalid language code: ee

>>> from mailman.interfaces.languages import ILanguageManager
>>> getUtility(ILanguageManager).add('ee', 'iso-8859-1', 'Freedonian')
<Language [ee] Freedonian>

>>> FakeArgs.quiet = False
>>> FakeArgs.listname = ['test3@example.com']
>>> FakeArgs.language = 'fr'
>>> command.process(FakeArgs)
Created mailing list: test3@example.com

>>> mlist = list_manager.get('test3@example.com')
>>> print(mlist.preferred_language)
<Language [fr] French>
>>> FakeArgs.language = None

Notifications

When told to, Mailman will notify the list owners of their new mailing list.

>>> FakeArgs.listname = ['test6@example.com']
>>> FakeArgs.notify = True
>>> command.process(FakeArgs)
Created mailing list: test6@example.com

The notification message is in the virgin queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> for message in messages:
... print(message.msg.as_string())
MIME-Version: 1.0
...
Subject: Your new mailing list: test6@example.com
From: noreply@example.com
To: foo@example.net, bar@example.net, baz@example.net
...

The mailing list 'test6@example.com' has just been created for you.
The following is some basic information about your mailing list.

You can configure your mailing list at the following web page:

 http://lists.example.com/admin/test6@example.com

The web page for users of your mailing list is:

 http://lists.example.com/listinfo/test6@example.com

There is also an email-based interface for users (not administrators)
of your list; you can get info about using it by sending a message
with just the word 'help' as subject or in the body, to:

 test6-request@example.com

Please address all questions to noreply@example.com.

The ‘echo’ command

The mail command ‘echo’ simply replies with the original command and arguments
to the sender.

>>> command = config.commands['echo']
>>> print(command.name)
echo
>>> print(command.argument_description)
[args]
>>> print(command.description)
Echo back your arguments.

The original message is ignored, but the results receive the echoed command.

>>> mlist = create_list('test@example.com')

>>> from mailman.runners.command import Results
>>> results = Results()

>>> from mailman.email.message import Message
>>> print(command.process(mlist, Message(), {}, ('foo', 'bar'), results))
ContinueProcessing.yes
>>> print(str(results))
The results of your email command are provided below.

echo foo bar

The ‘end’ command

The mail command processor recognized an ‘end’ command which tells it to stop
processing email messages.

>>> command = config.commands['end']
>>> print(command.name)
end
>>> print(command.description)
Stop processing commands.

The ‘end’ command takes no arguments.

>>> print('DESCRIPTION:', command.argument_description)
DESCRIPTION:

The command itself is fairly simple; it just stops command processing, and the
message isn’t even looked at.

>>> mlist = create_list('test@example.com')
>>> from mailman.email.message import Message
>>> print(command.process(mlist, Message(), {}, (), None))
ContinueProcessing.no

The ‘stop’ command is a synonym for ‘end’.

>>> command = config.commands['stop']
>>> print(command.name)
stop
>>> print(command.description)
An alias for 'end'.
>>> print('DESCRIPTION:', command.argument_description)
DESCRIPTION:
>>> print(command.process(mlist, Message(), {}, (), None))
ContinueProcessing.no

Email command help

You can get some help about the various email commands that are available by
sending the word help to a mailing list’s -request address.

>>> mlist = create_list('test@example.com')
>>> from mailman.commands.eml_help import Help
>>> help = Help()
>>> print(help.name)
help
>>> print(help.description)
Get help about available email commands.
>>> print(help.argument_description)
[command]

With no arguments, help provides a list of the available commands and a
short description of each of them.

>>> from mailman.runners.command import Results
>>> results = Results()

>>> from mailman.email.message import Message
>>> print(help.process(mlist, Message(), {}, (), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.

confirm - Confirm a subscription request.
echo - Echo back your arguments.
end - Stop processing commands.
help - Get help about available email commands.
join - Join this mailing list.
leave - Leave this mailing list.
stop - An alias for 'end'.
subscribe - An alias for 'join'.
unsubscribe - An alias for 'leave'.

With an argument, you can get more detailed help about a specific command.

>>> results = Results()
>>> print(help.process(mlist, Message(), {}, ('help',), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
help [command]
Get help about available email commands.
<BLANKLINE>

Some commands have even more detailed help.

>>> results = Results()
>>> print(help.process(mlist, Message(), {}, ('join',), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
join [digest=<no|mime|plain>]
Join this mailing list.
<BLANKLINE>
You will be asked to confirm your subscription request and you may be
issued a provisional password.
<BLANKLINE>
By using the 'digest' option, you can specify whether you want digest
delivery or not. If not specified, the mailing list's default delivery
mode will be used.
<BLANKLINE>

Importing list data

If you have the config.pck file for a version 2.1 mailing list, you can import
that into an existing mailing list in Mailman 3.0.

>>> from mailman.commands.cli_import import Import21
>>> command = Import21()

>>> class FakeArgs:
... listname = None
... pickle_file = None

>>> class FakeParser:
... def error(self, message):
... print(message)
>>> command.parser = FakeParser()

You must specify the mailing list you are importing into, and it must exist.

>>> command.process(FakeArgs)
List name is required

>>> FakeArgs.listname = ['import@example.com']
>>> command.process(FakeArgs)
No such list: import@example.com

When the mailing list exists, you must specify a real pickle file to import
from.

>>> mlist = create_list('import@example.com')
>>> command.process(FakeArgs)
config.pck file is required

>>> FakeArgs.pickle_file = [__file__]
>>> command.process(FakeArgs)
Not a Mailman 2.1 configuration file: .../import.rst

Now we can import the test pickle file. As a simple illustration of the
import, the mailing list’s ‘real name’ has changed.

>>> from pkg_resources import resource_filename
>>> FakeArgs.pickle_file = [
... resource_filename('mailman.testing', 'config.pck')]

>>> print(mlist.display_name)
Import

>>> command.process(FakeArgs)
>>> print(mlist.display_name)
Test

Getting information

You can get information about Mailman’s environment by using the command line
script mailman info. By default, the info is printed to standard output.

>>> from mailman.commands.cli_info import Info
>>> command = Info()

>>> class FakeArgs:
... output = None
... verbose = None
>>> args = FakeArgs()

>>> command.process(args)
GNU Mailman 3...
Python ...
...
config file: .../test.cfg
db url: ...
REST root url: http://localhost:9001/3.0/
REST credentials: restadmin:restpass

By passing in the -o/--output option, you can print the info to a file.

>>> from mailman.config import config
>>> import os
>>> output_path = os.path.join(config.VAR_DIR, 'output.txt')
>>> args.output = output_path
>>> command.process(args)
>>> with open(output_path) as fp:
... print(fp.read())
GNU Mailman 3...
Python ...
...
config file: .../test.cfg
db url: ...
devmode: DISABLED
REST root url: http://localhost:9001/3.0/
REST credentials: restadmin:restpass

You can also get more verbose information, which contains a list of the file
system paths that Mailman is using.

>>> args.output = None
>>> args.verbose = True
>>> config.create_paths = False
>>> config.push('fhs', """
... [mailman]
... layout: fhs
... """)
>>> cleanups.append((config.pop, 'fhs'))
>>> config.create_paths = True

The Filesystem Hierarchy Standard [http://www.pathname.com/fhs/] layout is the same everywhere by
definition.

>>> command.process(args)
GNU Mailman 3...
Python ...
...
File system paths:
 ARCHIVE_DIR = /var/lib/mailman/archives
 BIN_DIR = /sbin
 CFG_FILE = .../test.cfg
 DATA_DIR = /var/lib/mailman/data
 ETC_DIR = /etc
 EXT_DIR = /etc/mailman.d
 LIST_DATA_DIR = /var/lib/mailman/lists
 LOCK_DIR = /var/lock/mailman
 LOCK_FILE = /var/lock/mailman/master.lck
 LOG_DIR = /var/log/mailman
 MESSAGES_DIR = /var/lib/mailman/messages
 PID_FILE = /var/run/mailman/master.pid
 QUEUE_DIR = /var/spool/mailman
 TEMPLATE_DIR = .../mailman/templates
 VAR_DIR = /var/lib/mailman

Command line message injection

You can inject a message directly into a queue directory via the command
line.

>>> from mailman.commands.cli_inject import Inject
>>> command = Inject()

>>> class FakeArgs:
... queue = None
... show = False
... filename = None
... listname = None
... keywords = []
>>> args = FakeArgs()

>>> class FakeParser:
... def error(self, message):
... print(message)
>>> command.parser = FakeParser()

It’s easy to find out which queues are available.

>>> args.show = True
>>> command.process(args)
Available queues:
 archive
 bad
 bounces
 command
 digest
 in
 nntp
 out
 pipeline
 retry
 shunt
 virgin

>>> args.show = False

Usually, the text of the message to inject is in a file.

>>> import os, tempfile
>>> fd, filename = tempfile.mkstemp()
>>> with os.fdopen(fd, 'w') as fp:
... print("""\
... From: aperson@example.com
... To: test@example.com
... Subject: testing
... Message-ID: <aardvark>
...
... This is a test message.
... """, file=fp)

However, the mailing list name is always required.

>>> args.filename = filename
>>> command.process(args)
List name is required

Let’s provide a list name and try again.

>>> mlist = create_list('test@example.com')
>>> transaction.commit()
>>> from mailman.testing.helpers import get_queue_messages

>>> get_queue_messages('in')
[]
>>> args.listname = ['test@example.com']
>>> command.process(args)

By default, the incoming queue is used.

>>> items = get_queue_messages('in')
>>> len(items)
1
>>> print(items[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: testing
Message-ID: ...
Date: ...

This is a test message.

>>> dump_msgdata(items[0].msgdata)
_parsemsg : False
listid : test.example.com
original_size: 203
version : 3

But a different queue can be specified on the command line.

>>> args.queue = 'virgin'
>>> command.process(args)

>>> get_queue_messages('in')
[]
>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> print(items[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: testing
Message-ID: ...
Date: ...

This is a test message.

>>> dump_msgdata(items[0].msgdata)
_parsemsg : False
listid : test.example.com
original_size: 203
version : 3

Standard input

The message text can also be provided on standard input.

>>> from io import StringIO

>>> standard_in = StringIO(str("""\
... From: bperson@example.com
... To: test@example.com
... Subject: another test
... Message-ID: <badger>
...
... This is another test message.
... """))

>>> import sys
>>> sys.stdin = standard_in
>>> args.filename = '-'
>>> args.queue = None

>>> command.process(args)
>>> items = get_queue_messages('in')
>>> len(items)
1
>>> print(items[0].msg.as_string())
From: bperson@example.com
To: test@example.com
Subject: another test
Message-ID: ...
Date: ...

This is another test message.

>>> dump_msgdata(items[0].msgdata)
_parsemsg : False
listid : test.example.com
original_size: 211
version : 3

Metadata

Additional metadata keys can be provided on the command line. These key/value
pairs get added to the message metadata dictionary when the message is
injected.

>>> args = FakeArgs()
>>> args.filename = filename
>>> args.listname = ['test@example.com']
>>> args.keywords = ['foo=one', 'bar=two']
>>> command.process(args)

>>> items = get_queue_messages('in')
>>> dump_msgdata(items[0].msgdata)
_parsemsg : False
bar : two
foo : one
listid : test.example.com
original_size: 203
version : 3

Errors

It is an error to specify a queue that doesn’t exist.

>>> args.queue = 'xxbogusxx'
>>> command.process(args)
No such queue: xxbogusxx

It is also an error to specify a mailing list that doesn’t exist.

>>> args.queue = None
>>> args.listname = ['bogus']
>>> command.process(args)
No such list: bogus

Command line list display

A system administrator can display all the mailing lists via the command
line. When there are no mailing lists, a helpful message is displayed.

>>> class FakeArgs:
... advertised = False
... names = False
... descriptions = False
... quiet = False
... domains = None

>>> from mailman.commands.cli_lists import Lists
>>> command = Lists()
>>> command.process(FakeArgs)
No matching mailing lists found

When there are a few mailing lists, they are shown in alphabetical order by
their fully qualified list names, with a description.

>>> from mailman.interfaces.domain import IDomainManager
>>> from zope.component import getUtility
>>> getUtility(IDomainManager).add('example.net')
<Domain example.net...>

>>> mlist_1 = create_list('list-one@example.com')
>>> mlist_1.description = 'List One'

>>> mlist_2 = create_list('list-two@example.com')
>>> mlist_2.description = 'List Two'

>>> mlist_3 = create_list('list-one@example.net')
>>> mlist_3.description = 'List One in Example.Net'

>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com
list-one@example.net
list-two@example.com

Names

You can display the mailing list names with their posting addresses, using the
--names/-n switch.

>>> FakeArgs.names = True
>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com [List-one]
list-one@example.net [List-one]
list-two@example.com [List-two]

Descriptions

You can also display the mailing list descriptions, using the
--descriptions/-d option.

>>> FakeArgs.descriptions = True
>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com [List-one] - List One
list-one@example.net [List-one] - List One in Example.Net
list-two@example.com [List-two] - List Two

Maybe you want the descriptions but not the names.

>>> FakeArgs.names = False
>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com - List One
list-one@example.net - List One in Example.Net
list-two@example.com - List Two

Less verbosity

There’s also a --quiet/-q switch which reduces the verbosity a bit.

>>> FakeArgs.quiet = True
>>> FakeArgs.descriptions = False
>>> command.process(FakeArgs)
list-one@example.com
list-one@example.net
list-two@example.com

Specific domain

You can narrow the search down to a specific domain with the –domain option.
A helpful message is displayed if no matching domains are given.

>>> FakeArgs.quiet = False
>>> FakeArgs.domain = ['example.org']
>>> command.process(FakeArgs)
No matching mailing lists found

But if a matching domain is given, only mailing lists in that domain are
shown.

>>> FakeArgs.domain = ['example.net']
>>> command.process(FakeArgs)
1 matching mailing lists found:
list-one@example.net

More than one –domain argument can be given; then all mailing lists in
matching domains are shown.

>>> FakeArgs.domain = ['example.com', 'example.net']
>>> command.process(FakeArgs)
3 matching mailing lists found:
list-one@example.com
list-one@example.net
list-two@example.com

Advertised lists

Mailing lists can be ‘advertised’ meaning their existence is public
knowledge. Non-advertised lists are considered private. Display through the
command line can select on this attribute.

>>> FakeArgs.domain = []
>>> FakeArgs.advertised = True
>>> mlist_1.advertised = False

>>> command.process(FakeArgs)
2 matching mailing lists found:
list-one@example.net
list-two@example.com

Managing members

The mailman members command allows a site administrator to display, add,
and remove members from a mailing list.

>>> mlist1 = create_list('test1@example.com')

>>> class FakeArgs:
... input_filename = None
... output_filename = None
... listname = []
... regular = False
... digest = None
... nomail = None
>>> args = FakeArgs()

>>> from mailman.commands.cli_members import Members
>>> command = Members()

Listing members

You can list all the members of a mailing list by calling the command with no
options. To start with, there are no members of the mailing list.

>>> args.listname = [mlist1.fqdn_listname]
>>> command.process(args)
test1@example.com has no members

Once the mailing list add some members, they will be displayed.

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist1, 'Anne', email='anne@example.com')
<Member: Anne Person <anne@example.com> on test1@example.com
 as MemberRole.member>
>>> subscribe(mlist1, 'Bart', email='bart@example.com')
<Member: Bart Person <bart@example.com> on test1@example.com
 as MemberRole.member>
>>> command.process(args)
Anne Person <anne@example.com>
Bart Person <bart@example.com>

Members are displayed in alphabetical order based on their address.

>>> subscribe(mlist1, 'Anne', email='anne@aaaxample.com')
<Member: Anne Person <anne@aaaxample.com> on test1@example.com
 as MemberRole.member>
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Anne Person <anne@example.com>
Bart Person <bart@example.com>

You can also output this list to a file.

>>> from tempfile import mkstemp
>>> fd, args.output_filename = mkstemp()
>>> import os
>>> os.close(fd)
>>> command.process(args)
>>> with open(args.output_filename) as fp:
... print(fp.read())
Anne Person <anne@aaaxample.com>
Anne Person <anne@example.com>
Bart Person <bart@example.com>
>>> os.remove(args.output_filename)
>>> args.output_filename = None

The output file can also be standard out.

>>> args.output_filename = '-'
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Anne Person <anne@example.com>
Bart Person <bart@example.com>
>>> args.output_filename = None

Filtering on delivery mode

You can limit output to just the regular non-digest members…

>>> from mailman.interfaces.member import DeliveryMode
>>> args.regular = True
>>> member = mlist1.members.get_member('anne@example.com')
>>> member.preferences.delivery_mode = DeliveryMode.plaintext_digests
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Bart Person <bart@example.com>

…or just the digest members. Furthermore, you can either display all digest
members…

>>> member = mlist1.members.get_member('anne@aaaxample.com')
>>> member.preferences.delivery_mode = DeliveryMode.mime_digests
>>> args.regular = False
>>> args.digest = 'any'
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Anne Person <anne@example.com>

…just plain text digest members…

>>> args.digest = 'plaintext'
>>> command.process(args)
Anne Person <anne@example.com>

…just MIME digest members.

>>> args.digest = 'mime'
>>> command.process(args)
Anne Person <anne@aaaxample.com>

Reset for following tests.
>>> args.digest = None

Filtering on delivery status

You can also filter the display on the member’s delivery status. By default,
all members are displayed, but you can filter out only those whose delivery
status is enabled…

>>> from mailman.interfaces.member import DeliveryStatus

>>> member = mlist1.members.get_member('anne@aaaxample.com')
>>> member.preferences.delivery_status = DeliveryStatus.by_moderator
>>> member = mlist1.members.get_member('bart@example.com')
>>> member.preferences.delivery_status = DeliveryStatus.by_user

>>> member = subscribe(mlist1, 'Cris', email='cris@example.com')
>>> member.preferences.delivery_status = DeliveryStatus.unknown
>>> member = subscribe(mlist1, 'Dave', email='dave@example.com')
>>> member.preferences.delivery_status = DeliveryStatus.enabled
>>> member = subscribe(mlist1, 'Elle', email='elle@example.com')
>>> member.preferences.delivery_status = DeliveryStatus.by_bounces

>>> args.nomail = 'enabled'
>>> command.process(args)
Anne Person <anne@example.com>
Dave Person <dave@example.com>

…or disabled by the user…

>>> args.nomail = 'byuser'
>>> command.process(args)
Bart Person <bart@example.com>

…or disabled by the list administrator (or moderator)…

>>> args.nomail = 'byadmin'
>>> command.process(args)
Anne Person <anne@aaaxample.com>

…or by the bounce processor…

>>> args.nomail = 'bybounces'
>>> command.process(args)
Elle Person <elle@example.com>

…or for unknown (legacy) reasons.

>>> args.nomail = 'unknown'
>>> command.process(args)
Cris Person <cris@example.com>

You can also display all members who have delivery disabled for any reason.

>>> args.nomail = 'any'
>>> command.process(args)
Anne Person <anne@aaaxample.com>
Bart Person <bart@example.com>
Cris Person <cris@example.com>
Elle Person <elle@example.com>

Reset for following tests.
>>> args.nomail = None

Adding members

You can add members to a mailing list from the command line. To do so, you
need a file containing email addresses and full names that can be parsed by
email.utils.parseaddr().

>>> mlist2 = create_list('test2@example.com')

>>> import os
>>> path = os.path.join(config.VAR_DIR, 'addresses.txt')
>>> with open(path, 'w') as fp:
... for address in ('aperson@example.com',
... 'Bart Person <bperson@example.com>',
... 'cperson@example.com (Cate Person)',
...):
... print(address, file=fp)

>>> args.input_filename = path
>>> args.listname = [mlist2.fqdn_listname]
>>> command.process(args)

>>> from operator import attrgetter
>>> dump_list(mlist2.members.addresses, key=attrgetter('email'))
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>

You can also specify - as the filename, in which case the addresses are
taken from standard input.

>>> from io import StringIO
>>> fp = StringIO()
>>> for address in ('dperson@example.com',
... 'Elly Person <eperson@example.com>',
... 'fperson@example.com (Fred Person)',
...):
... print(address, file=fp)
>>> filepos = fp.seek(0)
>>> import sys
>>> sys.stdin = fp

>>> args.input_filename = '-'
>>> command.process(args)
>>> sys.stdin = sys.__stdin__

>>> dump_list(mlist2.members.addresses, key=attrgetter('email'))
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>
dperson@example.com
Elly Person <eperson@example.com>
Fred Person <fperson@example.com>

Blank lines and lines that begin with ‘#’ are ignored.

>>> with open(path, 'w') as fp:
... for address in ('gperson@example.com',
... '# hperson@example.com',
... ' ',
... '',
... 'iperson@example.com',
...):
... print(address, file=fp)

>>> args.input_filename = path
>>> command.process(args)
>>> dump_list(mlist2.members.addresses, key=attrgetter('email'))
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>
dperson@example.com
Elly Person <eperson@example.com>
Fred Person <fperson@example.com>
gperson@example.com
iperson@example.com

Addresses which are already subscribed are ignored, although a warning is
printed.

>>> with open(path, 'w') as fp:
... for address in ('gperson@example.com',
... 'aperson@example.com',
... 'jperson@example.com',
...):
... print(address, file=fp)

>>> command.process(args)
Already subscribed (skipping): gperson@example.com
Already subscribed (skipping): aperson@example.com

>>> dump_list(mlist2.members.addresses, key=attrgetter('email'))
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>
dperson@example.com
Elly Person <eperson@example.com>
Fred Person <fperson@example.com>
gperson@example.com
iperson@example.com
jperson@example.com

Displaying members

With no arguments, the command displays all members of the list.

>>> args.input_filename = None
>>> command.process(args)
aperson@example.com
Bart Person <bperson@example.com>
Cate Person <cperson@example.com>
dperson@example.com
Elly Person <eperson@example.com>
Fred Person <fperson@example.com>
gperson@example.com
iperson@example.com
jperson@example.com

Membership changes via email

Membership changes such as joining and leaving a mailing list, can be effected
via the email interface. The Mailman email commands join, leave, and
confirm are used.

Joining a mailing list

The mail command join subscribes an email address to the mailing list.
subscribe is an alias for join.

>>> from mailman.commands.eml_membership import Join
>>> from mailman.utilities.string import wrap
>>> join = Join()
>>> print(join.name)
join
>>> print(wrap(join.description))
You will be asked to confirm your subscription request and you may be
issued a provisional password.
<BLANKLINE>
By using the 'digest' option, you can specify whether you want digest
delivery or not. If not specified, the mailing list's default
delivery mode will be used.
>>> print(join.argument_description)
[digest=<no|mime|plain>]

No address to join

>>> mlist = create_list('alpha@example.com')
>>> mlist.send_welcome_message = False

When no address argument is given, the message’s From address will be used.
If that’s missing though, then an error is returned.

>>> from mailman.runners.command import Results
>>> results = Results()

>>> from mailman.email.message import Message
>>> print(join.process(mlist, Message(), {}, (), results))
ContinueProcessing.no
>>> print(results)
The results of your email command are provided below.

join: No valid address found to subscribe

The subscribe command is an alias.

>>> from mailman.commands.eml_membership import Subscribe
>>> subscribe = Subscribe()
>>> print(subscribe.name)
subscribe
>>> results = Results()
>>> print(subscribe.process(mlist, Message(), {}, (), results))
ContinueProcessing.no
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
subscribe: No valid address found to subscribe
<BLANKLINE>

Joining the sender

When the message has a From field, that address will be subscribed.

>>> msg = message_from_string("""\
... From: Anne Person <anne@example.com>
...
... """)
>>> results = Results()
>>> print(join.process(mlist, msg, {}, (), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
Confirmation email sent to Anne Person <anne@example.com>
<BLANKLINE>

Anne is not yet a member of the mailing list because she must confirm her
subscription request first.

>>> print(mlist.members.get_member('anne@example.com'))
None

Mailman has sent her the confirmation message.

>>> from mailman.testing.helpers import get_queue_messages
>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> print(items[0].msg.as_string())
MIME-Version: 1.0
...
Subject: confirm ...
From: alpha-confirm+...@example.com
To: anne@example.com
...
<BLANKLINE>
Email Address Registration Confirmation
<BLANKLINE>
Hello, this is the GNU Mailman server at example.com.
<BLANKLINE>
We have received a registration request for the email address
<BLANKLINE>
 anne@example.com
<BLANKLINE>
Before you can start using GNU Mailman at this site, you must first
confirm that this is your email address. You can do this by replying to
this message, keeping the Subject header intact.
<BLANKLINE>
If you do not wish to register this email address simply disregard this
message. If you think you are being maliciously subscribed to the list, or
have any other questions, you may contact
<BLANKLINE>
 alpha-owner@example.com
<BLANKLINE>

Anne confirms her registration.

>>> def extract_token(message):
... return str(message['subject']).split()[1].strip()
>>> token = extract_token(items[0].msg)

>>> from mailman.commands.eml_confirm import Confirm
>>> confirm = Confirm()
>>> msg = message_from_string("""\
... To: alpha-confirm+{token}@example.com
... From: anne@example.com
... Subject: Re: confirm {token}
...
... """.format(token=token))

>>> results = Results()
>>> print(confirm.process(mlist, msg, {}, (token,), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.

Confirmed

Anne is now a member of the mailing list.

>>> mlist.members.get_member('anne@example.com')
<Member: Anne Person <anne@example.com>
 on alpha@example.com as MemberRole.member>

Joining a second list

>>> mlist_2 = create_list('baker@example.com')
>>> msg = message_from_string("""\
... From: Anne Person <anne@example.com>
...
... """)
>>> print(join.process(mlist_2, msg, {}, (), Results()))
ContinueProcessing.yes

Anne is not a member of the mailing list.

>>> print(mlist_2.members.get_member('anne@example.com'))
None

One Anne confirms this subscription, she becomes a member of the mailing
list.

>>> items = get_queue_messages('virgin')
>>> len(items)
1
>>> token = extract_token(items[0].msg)
>>> msg = message_from_string("""\
... To: baker-confirm+{token}@example.com
... From: anne@example.com
... Subject: Re: confirm {token}
...
... """.format(token=token))

>>> results = Results()
>>> print(confirm.process(mlist_2, msg, {}, (token,), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.

Confirmed

>>> print(mlist_2.members.get_member('anne@example.com'))
<Member: Anne Person <anne@example.com>
 on baker@example.com as MemberRole.member>

Leaving a mailing list

The mail command leave unsubscribes an email address from the mailing
list. unsubscribe is an alias for leave.

>>> from mailman.commands.eml_membership import Leave
>>> leave = Leave()
>>> print(leave.name)
leave
>>> print(leave.description)
Leave this mailing list.
<BLANKLINE>
You may be asked to confirm your request.

Anne is a member of the baker@example.com mailing list, when she decides
to leave it. She sends a message to the -leave address for the list and
is sent a confirmation message for her request.

>>> results = Results()
>>> print(leave.process(mlist_2, msg, {}, (), results))
ContinueProcessing.yes
>>> print(results)
The results of your email command are provided below.
<BLANKLINE>
Anne Person <anne@example.com> left baker@example.com
<BLANKLINE>

Anne is no longer a member of the mailing list.

>>> print(mlist_2.members.get_member('anne@example.com'))
None

Anne does not need to leave a mailing list with the same email address she’s
subscribe with. Any of her registered, linked, and validated email addresses
will do.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> anne = getUtility(IUserManager).get_user('anne@example.com')
>>> address = anne.register('anne.person@example.org')

>>> results = Results()
>>> print(mlist.members.get_member('anne@example.com'))
<Member: Anne Person <anne@example.com>
 on alpha@example.com as MemberRole.member>

>>> msg = message_from_string("""\
... To: alpha-leave@example.com
... From: anne.person@example.org
...
... """)

Since Anne’s alternative address has not yet been verified, it can’t be used
to unsubscribe Anne from the alpha mailing list.

>>> print(leave.process(mlist, msg, {}, (), results))
ContinueProcessing.no

>>> print(results)
The results of your email command are provided below.

Invalid or unverified email address: anne.person@example.org

>>> print(mlist.members.get_member('anne@example.com'))
<Member: Anne Person <anne@example.com>
 on alpha@example.com as MemberRole.member>

Once Anne has verified her alternative address though, it can be used to
unsubscribe her from the list.

>>> from mailman.utilities.datetime import now
>>> address.verified_on = now()

>>> results = Results()
>>> print(leave.process(mlist, msg, {}, (), results))
ContinueProcessing.yes

>>> print(results)
The results of your email command are provided below.

Anne Person <anne.person@example.org> left alpha@example.com

>>> print(mlist.members.get_member('anne@example.com'))
None

Confirmations

Bart wants to join the alpha list, so he sends his subscription request.

>>> msg = message_from_string("""\
... From: Bart Person <bart@example.com>
...
... """)

>>> print(join.process(mlist, msg, {}, (), Results()))
ContinueProcessing.yes

There are two messages in the virgin queue, one of which is the confirmation
message.

>>> for item in get_queue_messages('virgin'):
... if str(item.msg['subject']).startswith('confirm'):
... break
... else:
... raise AssertionError('No confirmation message')
>>> token = extract_token(item.msg)

Bart replies to the original message, specifically keeping the Subject header
intact except for any prefix. Mailman matches the token and confirms Bart as
a user of the system.

>>> msg = message_from_string("""\
... From: Bart Person <bart@example.com>
... To: alpha-confirm+{token}@example.com
... Subject: Re: confirm {token}
...
... """.format(token=token))

>>> results = Results()
>>> print(confirm.process(mlist, msg, {}, (token,), results))
ContinueProcessing.yes

>>> print(results)
The results of your email command are provided below.

Confirmed

Now Bart is now a member of the mailing list.

>>> print(mlist.members.get_member('bart@example.com'))
<Member: Bart Person <bart@example.com>
 on alpha@example.com as MemberRole.member>

Dumping queue files

The qfile command dumps the contents of a queue pickle file. This is
especially useful when you have shunt files you want to inspect.

XXX Test the interactive operation of qfile

Pretty printing

By default, the qfile command pretty prints the contents of a queue pickle
file to standard output.

>>> from mailman.commands.cli_qfile import QFile
>>> command = QFile()

>>> class FakeArgs:
... interactive = False
... doprint = True
... qfile = []

Let’s say Mailman shunted a message file.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: Uh oh
...
... I borkeded Mailman.
... """)

>>> shuntq = config.switchboards['shunt']
>>> basename = shuntq.enqueue(msg, foo=7, bar='baz', bad='yes')

Once we’ve figured out the file name of the shunted message, we can print it.

>>> from os.path import join
>>> qfile = join(shuntq.queue_directory, basename + '.pck')

>>> FakeArgs.qfile = [qfile]
>>> command.process(FakeArgs)
[----- start pickle -----]
<----- start object 1 ----->
From: aperson@example.com
To: test@example.com
Subject: Uh oh

I borkeded Mailman.

<----- start object 2 ----->
{'_parsemsg': False, 'bad': 'yes', 'bar': 'baz', 'foo': 7, 'version': 3}
[----- end pickle -----]

Maybe we don’t want to print the contents of the file though, in case we want
to enter the interactive prompt.

>>> FakeArgs.doprint = False
>>> command.process(FakeArgs)

Command line list removal

A system administrator can remove mailing lists by the command line.

>>> create_list('test@example.com')
<mailing list "test@example.com" at ...>

>>> from mailman.interfaces.listmanager import IListManager
>>> from zope.component import getUtility
>>> list_manager = getUtility(IListManager)
>>> list_manager.get('test@example.com')
<mailing list "test@example.com" at ...>

>>> class FakeArgs:
... quiet = False
... archives = False
... listname = ['test@example.com']
>>> args = FakeArgs()

>>> from mailman.commands.cli_lists import Remove
>>> command = Remove()
>>> command.process(args)
Removed list: test@example.com

>>> print(list_manager.get('test@example.com'))
None

You can also remove lists quietly.

>>> create_list('test@example.com')
<mailing list "test@example.com" at ...>

>>> args.quiet = True
>>> command.process(args)

>>> print(list_manager.get('test@example.com'))
None

Getting status

The status of the Mailman master process can be queried from the command line.
It’s clear at this point that nothing is running.

>>> from mailman.commands.cli_status import Status
>>> status = Status()

>>> class FakeArgs:
... pass

The status is printed to stdout and a status code is returned.

>>> status.process(FakeArgs)
GNU Mailman is not running
0

We can simulate the master starting up by acquiring its lock.

>>> from flufl.lock import Lock
>>> lock = Lock(config.LOCK_FILE)
>>> lock.lock()

Getting the status confirms that the master is running.

>>> status.process(FakeArgs)
GNU Mailman is running (master pid: ...

We shut down the master and confirm the status.

>>> lock.unlock()
>>> status.process(FakeArgs)
GNU Mailman is not running
0

Unshunt

When errors occur while processing email messages, the messages will end up in
the shunt queue. The unshunt command allows system administrators to
manage the shunt queue.

>>> from mailman.commands.cli_unshunt import Unshunt
>>> command = Unshunt()

>>> class FakeArgs:
... discard = False

Let’s say there is a message in the shunt queue.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <aardvark>
...
... """)

>>> shuntq = config.switchboards['shunt']
>>> len(list(shuntq.files))
0
>>> base_name = shuntq.enqueue(msg, {})
>>> len(list(shuntq.files))
1

The unshunt command by default moves the message back to the incoming
queue.

>>> inq = config.switchboards['in']
>>> len(list(inq.files))
0

>>> command.process(FakeArgs)

>>> from mailman.testing.helpers import get_queue_messages
>>> items = get_queue_messages('in')
>>> len(items)
1
>>> print(items[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: A broken message
Message-ID: <aardvark>

unshunt moves all shunt queue messages.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <badgers>
...
... """)
>>> base_name = shuntq.enqueue(msg, {})

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <crow>
...
... """)
>>> base_name = shuntq.enqueue(msg, {})

>>> len(list(shuntq.files))
2

>>> command.process(FakeArgs)
>>> items = get_queue_messages('in')
>>> len(items)
2

>>> sorted(item.msg['message-id'] for item in items)
['<badgers>', '<crow>']

Return to the original queue

While the messages in the shunt queue are generally returned to the incoming
queue, if the error occurred while the message was being processed from a
different queue, it will be returned to the queue it came from.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <dingo>
...
... """)

The queue that the message comes from is in message metadata.

>>> base_name = shuntq.enqueue(msg, {}, whichq='bounces')

>>> len(list(shuntq.files))
1
>>> len(list(config.switchboards['bounces'].files))
0

The message is automatically re-queued to the bounces queue.

>>> command.process(FakeArgs)
>>> len(list(shuntq.files))
0
>>> items = get_queue_messages('bounces')
>>> len(items)
1

>>> print(items[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: A broken message
Message-ID: <dingo>

Discarding all shunted messages

If you don’t care about the shunted messages, just discard them.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A broken message
... Message-ID: <elephant>
...
... """)
>>> base_name = shuntq.enqueue(msg, {})

>>> FakeArgs.discard = True
>>> command.process(FakeArgs)

The messages are now gone.

>>> items = get_queue_messages('in')
>>> len(items)
0

Printing the version

You can print the Mailman version number.

>>> from mailman.commands.cli_version import Version
>>> command = Version()

>>> command.process(None)
GNU Mailman 3...

Operating on mailing lists

The withlist command is a pretty powerful way to operate on mailing lists
from the command line. This command allows you to interact with a list at a
Python prompt, or process one or more mailing lists through custom made Python
functions.

XXX Test the interactive operation of withlist

Getting detailed help

Because withlist is so complex, you need to request detailed help.

>>> from mailman.commands.cli_withlist import Withlist
>>> command = Withlist()

>>> class FakeArgs:
... interactive = False
... run = None
... details = True
... listname = []

>>> class FakeParser:
... def error(self, message):
... print(message)
>>> command.parser = FakeParser()

>>> args = FakeArgs()
>>> command.process(args)
This script provides you with a general framework for interacting with a
mailing list.
...

Running a command

By putting a Python function somewhere on your sys.path, you can have
withlist call that function on a given mailing list. The function takes a
single argument, the mailing list.

>>> import os, sys
>>> old_path = sys.path[:]
>>> sys.path.insert(0, config.VAR_DIR)

>>> with open(os.path.join(config.VAR_DIR, 'showme.py'), 'w') as fp:
... print("""\
... def showme(mailing_list):
... print("The list's name is", mailing_list.fqdn_listname)
...
... def displayname(mailing_list):
... print("The list's display name is", mailing_list.display_name)
... """, file=fp)

If the name of the function is the same as the module, then you only need to
name the function once.

>>> mlist = create_list('aardvark@example.com')
>>> args.details = False
>>> args.run = 'showme'
>>> args.listname = 'aardvark@example.com'
>>> command.process(args)
The list's name is aardvark@example.com

The function’s name can also be different than the modules name. In that
case, just give the full module path name to the function you want to call.

>>> args.run = 'showme.displayname'
>>> command.process(args)
The list's display name is Aardvark

Multiple lists

You can run a command over more than one list by using a regular expression in
the listname argument. To indicate a regular expression is used, the string
must start with a caret.

>>> mlist_2 = create_list('badger@example.com')
>>> mlist_3 = create_list('badboys@example.com')

>>> args.listname = '^.*example.com'
>>> command.process(args)
The list's display name is Aardvark
The list's display name is Badboys
The list's display name is Badger

>>> args.listname = '^bad.*'
>>> command.process(args)
The list's display name is Badboys
The list's display name is Badger

>>> args.listname = '^foo'
>>> command.process(args)

Error handling

You get an error if you try to run a function over a non-existent mailing
list.

>>> args.listname = 'mystery@example.com'
>>> command.process(args)
No such list: mystery@example.com

You also get an error if no mailing list is named.

>>> args.listname = None
>>> command.process(args)
--run requires a mailing list name

IPython

You can use IPython [http://ipython.org/] as the interactive shell by changing certain
configuration variables in the [shell] section of your mailman.cfg file.
Set use_ipython to “yes” to switch to IPython, which must be installed on
your system.

Other configuration variables in the [shell] section can be used to
configure other aspects of the interactive shell. You can change both the
prompt and the banner.

Chains

When a new message is posted to a mailing list, Mailman uses a set of rule
chains to decide whether the message gets accepted for posting, rejected,
discarded, or held for moderator approval.

There are a number of built-in chains available that act as end-points in the
processing of messages.

The Discard chain

The discard chain simply throws the message away.

>>> chain = config.chains['discard']
>>> print(chain.name)
discard
>>> print(chain.description)
Discard a message and stop processing.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... An important message.
... """)

>>> def print_msgid(event):
... print('{0}: {1}'.format(
... event.chain.name.upper(), event.msg.get('message-id', 'n/a')))

>>> from mailman.core.chains import process
>>> from mailman.testing.helpers import event_subscribers

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {}, 'discard')
DISCARD: <first>

The Reject chain

The reject chain bounces the message back to the original sender, and logs
this action.

>>> chain = config.chains['reject']
>>> print(chain.name)
reject
>>> print(chain.description)
Reject/bounce a message and stop processing.

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {}, 'reject')
REJECT: <first>

The bounce message is now sitting in the virgin queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> qfiles = get_queue_messages('virgin')
>>> len(qfiles)
1
>>> print(qfiles[0].msg.as_string())
Subject: My first post
From: test-owner@example.com
To: aperson@example.com
...
[No bounce details are available]
...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
<BLANKLINE>
An important message.
<BLANKLINE>
...

The Hold Chain

The hold chain places the message into the administrative request database
and depending on the list’s settings, sends a notification to both the
original sender and the list moderators.

>>> chain = config.chains['hold']
>>> print(chain.name)
hold
>>> print(chain.description)
Hold a message and stop processing.

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {}, 'hold')
HOLD: <first>

There are now two messages in the virgin queue, one to the list moderators and
one to the original author.

>>> qfiles = get_queue_messages('virgin', sort_on='to')
>>> len(qfiles)
2

One of the message is addressed to the mailing list moderators, and the other
is addressed to the original sender.

>>> from operator import itemgetter
>>> messages = sorted((item.msg for item in qfiles),
... key=itemgetter('to'), reverse=True)

This one is addressed to the list moderators.

>>> print(messages[0].as_string())
Subject: test@example.com post from aperson@example.com requires approval
From: test-owner@example.com
To: test-owner@example.com
MIME-Version: 1.0
...
As list administrator, your authorization is requested for the
following mailing list posting:
<BLANKLINE>
 List: test@example.com
 From: aperson@example.com
 Subject: My first post
<BLANKLINE>
The message is being held because:
<BLANKLINE>
 N/A
<BLANKLINE>
At your convenience, visit your dashboard to approve or deny the
request.
<BLANKLINE>
...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Message-ID-Hash: RXJU4JL6N2OUN3OYMXXPPSCR7P7JE2BW
<BLANKLINE>
An important message.
<BLANKLINE>
...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Subject: confirm ...
From: test-request@example.com
...
<BLANKLINE>
If you reply to this message, keeping the Subject: header intact,
Mailman will discard the held message. Do this if the message is
spam. If you reply to this message and include an Approved: header
with the list password in it, the message will be approved for posting
to the list. The Approved: header can also appear in the first line
of the body of the reply.
...

This message is addressed to the sender of the message.

>>> print(messages[1].as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Your message to test@example.com awaits moderator approval
From: test-bounces@example.com
To: aperson@example.com
...
Your mail to 'test@example.com' with the subject
<BLANKLINE>
 My first post
<BLANKLINE>
Is being held until the list moderator can review it for approval.
<BLANKLINE>
The message is being held because:
<BLANKLINE>
 N/A
<BLANKLINE>
Either the message will get posted to the list, or you will receive
notification of the moderator's decision.

The Accept chain

The accept chain sends the message on the pipeline queue, where it will be
processed and sent on to the list membership.

>>> chain = config.chains['accept']
>>> print(chain.name)
accept
>>> print(chain.description)
Accept a message.

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {}, 'accept')
ACCEPT: <first>

>>> qfiles = get_queue_messages('pipeline')
>>> len(qfiles)
1
>>> print(qfiles[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Message-ID-Hash: RXJU4JL6N2OUN3OYMXXPPSCR7P7JE2BW

An important message.

Run-time chains

We can also define chains at run time, and these chains can be mutated.
Run-time chains are made up of links where each link associates both a rule
and a jump. The rule is really a rule name, which is looked up when
needed. The jump names a chain which is jumped to if the rule matches.

There is one built-in posting chain. This is the default chain to use when no
other input chain is defined for a mailing list. It runs through the default
rules.

>>> chain = config.chains['default-posting-chain']
>>> print(chain.name)
default-posting-chain
>>> print(chain.description)
The built-in moderation chain.

Once the sender is a member of the mailing list, the previously created
message is innocuous enough that it should pass through all default rules.
This message will end up in the pipeline queue.

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist, 'Anne')
<Member: aperson@example.com on test@example.com as MemberRole.member>

>>> with event_subscribers(print_msgid):
... process(mlist, msg, {})
ACCEPT: <first>

>>> qfiles = get_queue_messages('pipeline')
>>> len(qfiles)
1
>>> print(qfiles[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Message-ID-Hash: RXJU4JL6N2OUN3OYMXXPPSCR7P7JE2BW
X-Mailman-Rule-Misses: approved; emergency; loop; member-moderation;
 administrivia; implicit-dest; max-recipients; max-size;
 news-moderation; no-subject; suspicious-header; nonmember-moderation

An important message.

In addition, the message metadata now contains lists of all rules that have
hit and all rules that have missed.

>>> dump_list(qfiles[0].msgdata['rule_hits'])
Empty
>>> dump_list(qfiles[0].msgdata['rule_misses'])
administrivia
approved
emergency
implicit-dest
loop
max-recipients
max-size
member-moderation
news-moderation
no-subject
nonmember-moderation
suspicious-header

Runners

The runners are the processes that perform long-running tasks, such as
moving messages around the Mailman queues. Some runners don’t manage queues,
such as the LMTP and REST API handling runners. Each runner that manages a
queue directory though, is responsible for a slice of the hash space. It
processes all the files in its slice, sleeps a little while, then wakes up and
runs through its queue files again.

Basic architecture

The basic architecture of runner is implemented in the base class that all
runners inherit from. This base class implements a .run() method that
runs continuously in a loop until the .stop() method is called.

>>> mlist = create_list('test@example.com')

Here is a very simple derived runner class. Runners use a configuration
section in the configuration files to determine run characteristics, such as
the queue directory to use. Here we push a configuration section for the test
runner.

>>> config.push('test-runner', """
... [runner.test]
... max_restarts: 1
... """)

>>> from mailman.core.runner import Runner
>>> class TestableRunner(Runner):
... def _dispose(self, mlist, msg, msgdata):
... self.msg = msg
... self.msgdata = msgdata
... return False
...
... def _do_periodic(self):
... self.stop()
...
... def _snooze(self, filecnt):
... return

>>> runner = TestableRunner('test')

This runner doesn’t do much except run once, storing the message and metadata
on instance variables.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
...
... A test message.
... """)
>>> switchboard = config.switchboards['test']
>>> filebase = switchboard.enqueue(msg, listid=mlist.list_id,
... foo='yes', bar='no')
>>> runner.run()
>>> print(runner.msg.as_string())
From: aperson@example.com
To: test@example.com
<BLANKLINE>
A test message.
<BLANKLINE>
>>> dump_msgdata(runner.msgdata)
_parsemsg: False
bar : no
foo : yes
lang : en
listid : test.example.com
version : 3

XXX More of the Runner API should be tested.

The switchboard

The switchboard is subsystem that moves messages between queues. Each
instance of a switchboard is responsible for one queue directory.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com
...
... A test message.
... """)

Create a switchboard by giving its queue name and directory.

>>> import os
>>> queue_directory = os.path.join(config.QUEUE_DIR, 'test')
>>> from mailman.core.switchboard import Switchboard
>>> switchboard = Switchboard('test', queue_directory)
>>> print(switchboard.name)
test
>>> switchboard.queue_directory == queue_directory
True

Here’s a helper function for ensuring things work correctly.

>>> def check_qfiles(directory=None):
... if directory is None:
... directory = queue_directory
... files = {}
... for qfile in os.listdir(directory):
... root, ext = os.path.splitext(qfile)
... files[ext] = files.get(ext, 0) + 1
... if len(files) == 0:
... print('empty')
... for ext in sorted(files):
... print('{0}: {1}'.format(ext, files[ext]))

Enqueing and dequeing

The message can be enqueued with metadata specified in the passed in
dictionary.

>>> filebase = switchboard.enqueue(msg)
>>> check_qfiles()
.pck: 1

To read the contents of a queue file, dequeue it.

>>> msg, msgdata = switchboard.dequeue(filebase)
>>> print(msg.as_string())
From: aperson@example.com
To: _xtest@example.com
<BLANKLINE>
A test message.
<BLANKLINE>
>>> dump_msgdata(msgdata)
_parsemsg: False
version : 3
>>> check_qfiles()
.bak: 1

To complete the dequeing process, removing all traces of the message file,
finish it (without preservation).

>>> switchboard.finish(filebase)
>>> check_qfiles()
empty

When enqueing a file, you can provide additional metadata keys by using
keyword arguments.

>>> filebase = switchboard.enqueue(msg, {'foo': 1}, bar=2)
>>> msg, msgdata = switchboard.dequeue(filebase)
>>> switchboard.finish(filebase)
>>> dump_msgdata(msgdata)
_parsemsg: False
bar : 2
foo : 1
version : 3

Keyword arguments override keys from the metadata dictionary.

>>> filebase = switchboard.enqueue(msg, {'foo': 1}, foo=2)
>>> msg, msgdata = switchboard.dequeue(filebase)
>>> switchboard.finish(filebase)
>>> dump_msgdata(msgdata)
_parsemsg: False
foo : 2
version : 3

Iterating over files

There are two ways to iterate over all the files in a switchboard’s queue.
Normally, queue files end in .pck (for ‘pickle’) and the easiest way to
iterate over just these files is to use the .files attribute.

>>> filebase_1 = switchboard.enqueue(msg, foo=1)
>>> filebase_2 = switchboard.enqueue(msg, foo=2)
>>> filebase_3 = switchboard.enqueue(msg, foo=3)
>>> filebases = sorted((filebase_1, filebase_2, filebase_3))
>>> sorted(switchboard.files) == filebases
True
>>> check_qfiles()
.pck: 3

You can also use the .get_files() method if you want to iterate over all the
file bases for some other extension.

>>> for filebase in switchboard.get_files():
... msg, msgdata = switchboard.dequeue(filebase)
>>> bakfiles = sorted(switchboard.get_files('.bak'))
>>> bakfiles == filebases
True
>>> check_qfiles()
.bak: 3
>>> for filebase in switchboard.get_files('.bak'):
... switchboard.finish(filebase)
>>> check_qfiles()
empty

Recovering files

Calling .dequeue() without calling .finish() leaves .bak backup files in
place. These can be recovered when the switchboard is instantiated.

>>> filebase_1 = switchboard.enqueue(msg, foo=1)
>>> filebase_2 = switchboard.enqueue(msg, foo=2)
>>> filebase_3 = switchboard.enqueue(msg, foo=3)
>>> for filebase in switchboard.files:
... msg, msgdata = switchboard.dequeue(filebase)
... # Don't call .finish()
>>> check_qfiles()
.bak: 3
>>> switchboard_2 = Switchboard('test', queue_directory, recover=True)
>>> check_qfiles()
.pck: 3

The files can be recovered explicitly.

>>> for filebase in switchboard.files:
... msg, msgdata = switchboard.dequeue(filebase)
... # Don't call .finish()
>>> check_qfiles()
.bak: 3
>>> switchboard.recover_backup_files()
>>> check_qfiles()
.pck: 3

But the files will only be recovered at most three times before they are
considered defective. In order to prevent mail bombs and loops, once this
maximum is reached, the files will be preserved in the ‘bad’ queue.

>>> for filebase in switchboard.files:
... msg, msgdata = switchboard.dequeue(filebase)
... # Don't call .finish()
>>> check_qfiles()
.bak: 3
>>> switchboard.recover_backup_files()
>>> check_qfiles()
empty

>>> bad = config.switchboards['bad']
>>> check_qfiles(bad.queue_directory)
.psv: 3

Clean up

>>> for file in os.listdir(bad.queue_directory):
... os.remove(os.path.join(bad.queue_directory, file))
>>> check_qfiles(bad.queue_directory)
empty

Queue slices

XXX Add tests for queue slices.

Notes from the PyCon 2012 Mailman Sprint

These are notes from the Mailman sprint at PyCon 2012. They are not
terribly well organized, nor fully fleshed out. Please edit and push
branches to `Gitlab`_ or post patches to
the Mailman bug tracker at <https://gitlab.com/mailman/mailman/issues>.

The intent of this document is to provide a view of Mailman 3’s workflow and
structures from “eight miles high”.

Basic Messaging Handling Workflow

Mailman accepts a message via the LMTP protocol (RFC 2033). It implements a
simple LMTP server internally based on the LMTP server provided in the Python
standard library. The LMTP server’s responsibility is to parse the message
into a tuple (mlist, msg, msgdata). If the parse fails (including
messages which Mailman considers to be invalid due to lack of Message-Id as
strongly recommended by RFC 2822 and RFC 5322), the message will be rejected,
otherwise the parsed message and metadata dictionary are pickled, and the
resulting message pickle added to one of the in, command, or bounce
processing queues.

[image: digraph msgflow { rankdir = LR; node [shape=box, color=lightblue, style=filled]; msg [shape=ellipse, color=black, fillcolor=white]; lmtpd [label="LMTP\nSERVER"]; rts [label="Return\nto Sender"]; msg -> MTA [label="SMTP"]; MTA -> lmtpd [label="LMTP"]; lmtpd -> MTA [label="reject"]; lmtpd -> IN -> PIPELINE [label=".pck"]; IN -> rts; lmtpd -> BOUNCES [label=".pck"]; lmtpd -> COMMAND [label=".pck"]; }]

The in queue is processed by filter chains (explained below) to determine
whether the post (or administrative request) will be processed. If not
allowed, the message pickle is discarded, rejected (returned to sender), or
held (saved for moderator approval – not shown). Otherwise the message is
added to the pipeline (i.e. posting) queue. (Note that rejecting at this
stage is not equivalent to rejecting during LMTP processing. This issue is
currently unresolved.)

Each of the command, bounce, and pipeline queues is processed by a
pipeline of handlers as in Mailman 2’s pipeline. (Some functions such as
spam detection that were handled in the Mailman 2 pipeline are now in the
filter chains.)

Handlers may copy messages to other queues (e.g., archive), and eventually
posted messages for distribution to the list membership end up in the out
queue for injection into the MTA.

The virgin queue (not depicted above) is a special queue for messages created
by Mailman.

[image: digraph pipeline { node [shape=box, style=rounded, group=0] { "MIME\ndelete" -> "cleanse headers" -> "add headers" -> "calculate\nrecipients" -> "to digest" -> "to archive" -> "to outgoing" } node [shape=box, color=lightblue, style=filled, group=1] { rank=same; PIPELINE -> "MIME\ndelete" } { rank=same; "to digest" -> DIGEST } { rank=same; "to archive" -> ARCHIVE } { rank=same; "to outgoing" -> OUT } }]

Message Filtering

Once a message has been classified as a post or administrivia, rules are
applied to determine whether the message should be distributed or acted on.
Rules include things like “if the message’s sender is a non-member, hold it
for moderation”, or “if the message contains an Approved header with a valid
password, allow it to be posted”. A rule may also make no decision, in which
case message processing is passed on to the next rule in the filter chain.
The default set of rules looks something like this:

Configuration

Mailman 3 uses lazr.config [http://pypi.python.org/pypi/lazr.config], essentially an “ini”-style configuration format.

Each Runner’s configuration object knows whether it should be started
when the Mailman daemon starts, and what queue the Runner manages.

Shell Commands

mailman: This is an ubercommand, with subcommands for all the various things
admins might want to do, similar to Mailman 2’s mailmanctl, but with more
functionality.

bin/master: The runner manager: starts, watches, stops the runner
daemons.

bin/runner: Individual runner daemons. Each instance is configured with
arguments specified on the command line.

User Model

A user represents a person. A user has an id and a display
name, and optionally a list of linked addresses.

Each address is a separate object, linked to no more than one user.

A list member associates an address with a mailing list. Each list member
has a id, a mailing list name, an address (which may be None, representing
the user’s preferred address), a list of preferences, and a role such as
“owner” or “moderator”. Roles are used to determine what kinds of mail the
user receives via that membership. Owners will receive mail to
list-owner, but not posts and moderation traffic, for example. A user with
multiple roles on a single list will therefore have multiple memberships in
that list, one for each role.

Roles are implemented by “magical, invisible” rosters which are objects
representing queries on the membership database.

List Styles

Each list style is a named object. Its attributes are functions used to
apply the relevant style settings to the mailing list at creation time.
Since these are functions, they can be composed in various ways, to create
substyles, etc.

GNU Mailman Acknowledgments

Copyright (C) 1998-2016 by the Free Software Foundation, Inc.

Governance

GNU Mailman was invented by John Viega. Barry Warsaw is the current project
leader. Aurélien Bompard leads HyperKitty and bundler development. Florian
Fuchs leads Postorius development. Development of mailman.client is a group
effort.

All project decisions are made by consensus via the Mailman Cabal, er,
Steering Committee which can be contacted directly via mailman-cabal@python.org

Core Developers

The following folks are or have been core developers of Mailman (in reverse
alphabetical order):

	Abhilash Raj, Mailman’s Youngest Core Dev

	Aurélien Bompard, Pizzaman

	Barry Warsaw, Mailman’s yappy guard dog

	Florian Fuchs

	Harald Meland, Norse Mailman

	John Viega, Mailman’s inventor

	Ken Manheimer, Mailman’s savior

	Mark Sapiro, Mailman’s compulsive responder

	Scott Cotton, Cookie-Monster

	Stephen J. Turnbull, Standards Otaku

	Terri Oda

	Thomas Wouters, Mailman’s Dutch treat

	Tokio Kikuchi (RIP), Mailman’s weatherman

Copyright Assignees

Here is the list of other contributors who have donated large bits of
code, and have assigned copyright for contributions to the FSF:

	Juan Carlos Rey Anaya

	Andrija Arsic

	Richard Barrett

	Jimmy Bergman

	Stephan Berndts

	Norbert Bollow

	Joe Dugan

	Ethan Mindlace Fremen

	Ben Gertzfield

	Victoriano Giralt

	Stephen Goss

	Mads Kiilerich

	Cedric Knight

	Patrick Ben Koetter

	The Dragon De Monsyne

	Les Niles

	Reed O’Brien

	Terri Oda

	Simone Piunno

	Claudia Schmidt

	Andreas Schosser

	Richard Wackerbarth

Special Thanks

Very special thanks to Andrija Arsic for his winning new GNU Mailman logos.

Thanks also go to the following people for their important contributions in
other aspects of the Mailman project:

	Brad Knowles

	JC Dill

	Clytie Siddall

Thanks also to Dragon for his original Mailman logo contribution, and to Terri
Oda for the neat shortcut icon and the member documentation.

Control.com sponsored development of several Mailman 2.1 features, including
topics filters, external membership sources, and initial virtual mailing list
support. My thanks especially to Dan Pierson and Ken Crater from Control.com.

Here is the list of other people who have contributed useful ideas,
suggestions, bug fixes, testing, etc., or who have been very helpful in
answering questions on mailman-users. Please let me know if you have been
left off the list!

	David Abrahams

	William Ahern

	Terry Allen

	Jose Paulo Moitinho de Almeida

	Sven Anderson

	Matthias Andree

	Anton Antonov

	Mike Avery

	Stonewall Ballard

	Moreno Baricevic

	Jimmy Bergman

	Jeff Berliner

	Stuart Bishop

	David Blomquist

	Bojan

	Søren Bondrup

	Grant Bowman

	Alessio Bragadini

	J. D. Bronson

	Stan Bubrouski

	Daniel Buchmann

	Ben Burnett

	Ted Cabeen

	Mentor Cana

	John Carnes

	Julio A. Cartaya

	Claudio Cattazzo

	Donn Cave

	David Champion

	Hye-Shik Chang

	Eric D. Christensen

	Tom G. Christensen

	Paul Cox

	Stefaniu Criste

	Robert Daeley

	Ned Dawes

	Emilio Delgado

	John Dennis

	Stefan Divjak

	Maximillian Dornseif

	Fred Drake

	Maxim Dzumanenko

	Piarres Beobide Egaña

	Rob Ellis

	Kerem Erkan

	Fil

	Patrick Finnerty

	Bob Fleck

	Erik Forsberg

	Darrell Fuhriman

	Robert Garrigós

	Carson Gaspar

	Pascal GEORGE

	Vadim Getmanshchuk

	David Gibbs

	Dmitri I GOULIAEV

	Terry Grace

	Federico Grau

	Pekka Haavisto

	David Habben

	Stig Hackvan

	Jeff Hahn

	Terry Hardie

	Paul Hebble

	Tollef Fog Heen

	Peer Heinlein

	James Henstridge

	Walter Hop

	Bert Hubert

	Henny Huisman

	Jeremy Hylton

	Ikeda Soji

	Rostyk Ivantsiv

	Ron Jarrell

	Matthias Juchem

	Tamito KAJIYAMA

	Nino Katic

	SHIGENO Kazutaka

	Ashley M. Kirchner

	Matthias Klose

	Harald Koch

	Patrick Koetter

	Eddie Kohler

	Chris Kolar

	Uros Kositer

	Andrew Kuchling

	Ricardo Kustner

	L’homme Moderne

	Sylvain Langlade

	Ed Lau

	J C Lawrence

	Greg Lindahl

	Christopher P. Lindsey

	Martin von Loewis

	Dario Lopez-Kästen

	Tanner Lovelace

	Jay Luker

	Gergely Madarasz

	Luca Maranzano

	John A. Martin

	Andrew Martynov

	Jason R. Mastaler

	Michael Mclay

	Michael Meltzer

	Marc MERLIN

	Nigel Metheringham

	Dan Mick

	Garey Mills

	Martin Mokrejs

	Michael Fischer v. Mollard

	David Martínez Moreno

	Dirk Mueller

	Jonas Muerer

	Erik Myllymaki

	Balazs Nagy

	Moritz Naumann

	Dale Newfield

	Hrvoje Niksic

	Les Niles

	Mike Noyes

	David B. O’Donnell

	Timothy O’Malley

	“office”

	Dan Ohnesorg

	Gerald Oskoboiny

	Eva Österlind

	Toni Panadès

	Jon Parise

	Chris Pepper

	Tim Peters

	Joe Peterson

	PieterB

	Rodolfo Pilas

	Skye Poier

	Martin Pool

	Don Porter

	Francesco Potortì

	Bob Puff

	Abhilash Raj

	Michael Ranner

	John Read

	Sean Reifschneider

	Christian Reis

	Ademar de Souza Reis, Jr.

	Bernhard Reiter

	Stephan Richter

	Tristan Roddis

	Heiko Rommel

	Luigi Rosa

	Guido van Rossum

	Nicholas Russo

	Chris Ryan

	Cabel Sasser

	Bartosz Sawicki

	Kai Schaetzl

	Karoly Segesdi

	Gleydson Mazioli da Silva

	Pasi Sjöholm

	Chris Snell

	Mikhail Sobolev

	David Soto

	Greg Stein

	Dale Stimson

	Students of HIT <mailman-cn@mail.cs.hit.edu.cn>

	Alexander Sulfrian

	Szabolcs Szigeti

	Vizi Szilard

	David T-G

	Owen Taylor

	Danny Terweij

	Jim Tittsler

	Todd (Freedom Lover)

	Roger Tsang

	Chuq Von Rospach

	Jens Vagelpohl

	Valia V. Vaneeva

	Anti Veeranna

	Todd Vierling

	Bill Wagner

	Greg Ward

	Mark Weaver

	Kathleen Webb

	Florian Weimer

	Ousmane Wilane

	Dan Wilder

	Seb Wills

	Dai Xiaoguang

	Ping Yeh

	YASUDA Yukihiro

	Michael Yount

	Blair Zajac

	Mikhail Zabaluev

	Noam Zeilberger

	Daniel Zeiss

	Todd Zullinger

And everyone else on mailman-developers@python.org and
mailman-users@python.org! Thank you, all.

Set up the archive ui in five minutes

Note

This document is way out of date. If you have access to the Web,
the most recent explanation of setting up a full Mailman 3 system,
including Postorius and HyperKitty, is the Development Setup Guide [https://fedorahosted.org/hyperkitty/wiki/DevelopmentSetupGuide] at
FedoraHosted [https://fedorahosted.org/]. If you must work offline, this document may be of some
use, but be careful.

The hyperkitty [https://fedorahosted.org/hyperkitty/] application aims at providing an interface to visualize and
explore Mailman archives.

This is a Django [http://djangoproject.org/] project.

Requirements

	A mail archive in maildir format [http://en.wikipedia.org/wiki/Maildir] (no, you don’t need a running Mailman
3!) Eventually hyperkitty will support mbox format [http://en.wikipedia.org/wiki/Mbox] for backward
compatibility with Pipermail, and zipped maildirs seem like a good idea
to save space. Beware: Although you’d think that we would be able to
manipulate the venerable mbox format safely and efficiently, that doesn’t
seem to be the case. Maildir archives are strongly preferred, because
they are more robust to program bugs (whether in Mailman, hyperkitty, or in
the originating MUA!)

	Django is the web framework that supports the UI.

	bunch [http://pypi.python.org/pypi/bunch] DOES WHAT?

	The notmuch mail indexer [http://notmuchmail.org] is used to generate indexes (and requires
Xapian [http://xapian.org/]).

	hyperkitty itself, which is a UI, and not responsible for maintaining the
message archive itself. (Since the archive is in maildir format [http://en.wikipedia.org/wiki/Maildir], any
modern MTA or MDA can build one for you.)

Get it running (under virtualenv):

It is generally a good idea to use virtualenv [http://pypi.python.org/pypi/virtualenv] to create a stable
environment for your Python applications.

	Create the virtualenv:

% virtualenv mailman3

	Activate the virtualenv:

% cd mailman3
% source bin/activate

You don’t have to use virtualenv, though, and if you don’t want to, just
omit the preceding steps. Continue with these steps.

	Install Django and dependencies:

% easy_install django
% easy_install bunch

	Install notmuch – these are bindings that come with the notmuch C library.
The easiest way is probably to install them for your OS vendor and then
symlink them into the virtualenv similar to this:

% yum install -y python-notmuch

	Note: on a multiarch system like Fedora, the directories may be lib64 rather
than lib on 64 bit systems. Next:

% cd lib/python2.7/site-packages
% ln -s /usr/lib/python2.7/site-packages/notmuch .

	Note: this is the version of notmuch I tested with; others may work:

% ln -s /usr/lib/python2.7/site-packages/notmuch-0.11-py2.7.egg-info .

	Install the hyperkitty sources:

% git clone https://github.com/hyperkitty/kittystore.git
% git clone https://github.com/hyperkitty/hyperkitty.git
% git clone https://github.com/hyperkitty/hyperkitty_standalone.git

Running hyperkitty

	Start it:

% cd hyperkitty

	Put the static content where it should be:

% python manage.py collectstatic

	Run the Django server:

% python manage.py runserver

Setting up your database

Mailman uses the SQLAlchemy [http://www.sqlalchemy.org/] ORM to provide persistence of data in a
relational database. By default, Mailman uses Python’s built-in SQLite3 [http://docs.python.org/library/sqlite3.html]
database, however, SQLAlchemy is compatible with PostgreSQL [http://www.postgresql.org/] and MySQL, among
possibly others.

Currently, Mailman is known to work with either the default SQLite3 database,
or PostgreSQL. (Volunteers to port it to other databases are welcome!). If
you want to use SQLite3, you generally don’t need to change anything, but if
you want Mailman to use PostgreSQL, you’ll need to set that up first, and then
change a configuration variable in your /etc/mailman.cfg file.

Two configuration variables control which database Mailman uses. The first
names the class implementing the database interface. The second names the URL
for connecting to the database. Both variables live in the [database]
section of the configuration file.

SQLite3

As mentioned, if you want to use SQLite3 in the default configuration, you
generally don’t need to change anything. However, if you want to change where
the SQLite3 database is stored, you can change the url variable in the
[database] section. By default, the database is stored in the data
directory in the mailman.db file. Here’s how you’d force Mailman to
store its database in /var/lib/mailman/sqlite.db file:

[database]
url: sqlite:////var/lib/mailman/sqlite.db

PostgreSQL

First, you need to configure PostgreSQL itself. This Ubuntu article [https://help.ubuntu.com/community/PostgreSQL] may
help. Let’s say you create the mailman database in PostgreSQL via:

$ sudo -u postgres createdb -O $USER mailman

You would then need to set both the class and url variables in
mailman.cfg like so:

[database]
class: mailman.database.postgresql.PostgreSQLDatabase
url: postgres://myuser:mypassword@mypghost/mailman

That should be it.

If you have any problems, you may need to delete the database and re-create
it:

$ sudo -u postgres dropdb mailman
$ sudo -u postgres createdb -O myuser mailman

My thanks to Stephen A. Goss for his contribution of PostgreSQL support.

Database Migrations

Mailman uses Alembic [https://alembic.readthedocs.org/en/latest/] to manage database migrations. Let’s say you change
something in the models, what steps are needed to reflect that change in the
database schema? You need to create and enter a virtual environment, install
Mailman into that, and then run the alembic command. For example:

$ virtualenv -p python3 /tmp/mm3
$ source /tmp/mm3/bin/activate
$ python setup.py develop
$ alembic -c src/mailman/config/alembic.cfg revision --autogenerate -m
 "<migration_name>"

This would create a new migration which would automatically be migrated to the
database on the next run of Mailman. Note that the database needs to be in
the older state so that Alembic can track the changes in the schema and
autogenerate a migration. If you don’t have the database in the older state
you can remove the –autogenerate flag in the above command. It would then
create a new empty revision which you can edit manually to reflect your
changes in the database schema.

People upgrading Mailman from previous versions need not do anything manually,
as soon as a new migration is added in the sources, it will be automatically
reflected in the schema on first-run post-update.

Note: When auto-generating migrations using Alembic, be sure to check
the created migration before adding it to the version control. You will have
to manually change some of the special data types defined in
mailman.database.types. For example, mailman.database.types.Enum()
needs to be changed to sa.Integer(), as the Enum type stores just the
integer in the database. A more complex migration would be needed for
UUID depending upon the database layer to be used.

Developing Mailman

The following documentation is generated from the internal developer
documentation. This documentation is also used by the test suite. Another
good source of architectural information is available in the chapter written
by Barry Warsaw for the Architecture of Open Source Applications [http://www.aosabook.org/en/mailman.html].

For now, this will have to suffice as an overview of the Mailman system.

Object model

Every major component of the system is defined in an interface. Look through
src/mailman/interfaces for an understanding of the system components.
Mailman objects which are stored in the database, are defined by model
classes. Objects such as mailing lists, users, members, and addresses
are primary objects within the system.

Obviously, the mailing list is the central object which holds all the
configuration settings for a particular mailing list. A mailing list is
associated with a domain, and all mailing lists are managed by the mailing
list manager.

Users represent people, and have a user id and a display name. Users
are linked to addresses which represent a single email address. One user
can be linked to many addresses, but an address is only linked to one user.
Addresses can be verified or not verified. Mailman will deliver email
only to verified addresses.

Users and addresses are managed by the user manager.

A member is created when a user subscribes to a mailing list, either via
their preferred address or explicitly via one of their linked and verified
addresses. Members link an address to a mailing list, and represent regular
members, digest members, list owners, and list moderators. Members can even
represent non-members (i.e. people not yet subscribed to the mailing list)
for various moderation purposes.

Process model

Messages move around inside the Mailman system by way of queue directories
managed by the switchboard. For example, when a message is first received
by Mailman, it is moved to the in (for “incoming”) queue. During the
processing of this message, it – or copies of it – may be moved to other
queues such as the out queue (for outgoing email), the archive queue (for
sending to the archivers), the digest queue (for composing digests), etc.

A message in a queue is represented by a single file, a .pck file. This
file contains two objects, serialized as Python pickles [http://docs.python.org/2/library/pickle.html]. The first object
is the message being processed, already parsed into a more efficient internal
representation. The second object is a metadata dictionary that records
additional information about the message as it is being processed.

.pck files only exist for messages moving between different system queues.
There is no .pck file for messages while they are actively being
processed.

Each queue directory is associated with a runner process which wakes up
every so often. When the runner wakes up, it examines all the .pck files
in FIFO order, deserializing the message and metadata objects, processing
them. If the message needs further processing in a different queue, it will
be re-serialized back into a .pck file. If not (e.g. because processing
of the message is complete), then no .pck file is written.

The Mailman system uses a few other runners which don’t process messages in a
queue. You can think of these as fairly typical server process, and examples
include the LMTP server, and the HTTP server for processing REST commands.

All of the runners are managed by a master watcher process. When you type
mailman start you are actually starting the master. Based on
configuration options, the master will start the appropriate runners as
subprocesses, and it will watch for the clean exiting of these subprocesses
when mailman stop is called.

Rules and chains

When a message is first received for posting to a mailing list, Mailman
processes the message to determine whether the message is appropriate for the
mailing list. If so, it approves the message and it gets posted. Mailman
can also discard the message so that no further processing occurs. Mailman
can also reject the message, bouncing it back to the original sender, usual
with some indication of why the message was rejected. Mailman can also hold
the message for moderator approval.

Moderation is the phase of processing that determines which of the above
four dispositions will occur for the newly posted message. Moderation does
not generally change the message, but it may record information in the
metadata dictionary. Moderation is performed by the in queue runner.

Each step in the moderation phase is performed by applying a rule to the
message and asking whether the rule hits or misses. Each rule is linked
to an action which is taken if the rule hits (i.e. matches). If the rule
misses (i.e. doesn’t match), then the next rule is tried. All of the
rule/action links are strung together sequentially into a chain, and every
mailing list has a start chain where rule processing begins.

Actually, every mailing list has two start chains, one for regular postings
to the mailing list, and another for posting to the owners of the mailing
list.

To recap: when a message comes into Mailman for posting to a mailing list, the
incoming runner finds the destination mailing list, determines whether the
message is for the entire list membership, or the list owners, and retrieves
the appropriate start chain. The message is then passed to the chain, where
each link in the chain first checks to see if its rule matches, and if so, it
executes the linked action. This action is usually one of the typical
accept, reject, discard, and hold, but other actions are possible.

As you might imagine, you can write new rules, compose them into new chains,
and configure a mailing list to use your custom chain when processing the
message during the moderation phase.

Pipeline of handlers

Once a message is accepted for posting to the mailing list, the message is
usually modified in a number of different ways. For example, some message
headers may be added or removed, some MIME parts might be scrubbed, added, or
rearranged, and various informative headers and footers may be added to the
message.

The process of preparing the message for the list membership (as well as the
digests, archivers, and NNTP) falls to the pipeline of handlers managed by
the pipeline queue.

The pipeline of handlers is similar to the processing chain, except here, a
handler can make any modifications to the message it wants, and there is no
rule decision or action. The message and metadata simply flow through a
sequence of handlers arranged in a named pipeline. Some of the handlers
modify the message in ways described above, and others copy the message to the
outgoing, NNTP, archiver, or digester queues.

As with chains, each mailing list has two pipelines, one for posting to the
list membership, and the other for posting to the list’s owners.

Of course, you can define new handlers, compose them into new pipelines, and
change a mailing list’s pipelines.

Other bits and pieces

There are lots of other pieces to the Mailman puzzle, such as the REST API,
the set of core functionality (logging, initialization, event handling, etc.),
mailing list styles, the API for integrating external archivers and mail
servers. The database layer is an critical piece, and Mailman has an
extensive set of command line commands, and email commands.

Mailman - The GNU Mailing List Management System

This is GNU Mailman [http://www.list.org], a mailing list management system distributed under the
terms of the GNU General Public License [http://www.gnu.org/licenses/gpl.txt] (GPL) version 3 or later.

Mailman is written in Python [http://www.python.org], a free object-oriented programming language.
Python is available for all platforms that Mailman is supported on, which
includes GNU/Linux and most other Unix-like operating systems (e.g. Solaris,
*BSD, MacOSX, etc.). Mailman is not supported on Windows, although web and
mail clients on any platform should be able to interact with Mailman just
fine.

Learn more about GNU Mailman in the Getting Started documentation.

Copyright

Copyright 1998-2016 by the Free Software Foundation, Inc.

This file is part of GNU Mailman.

GNU Mailman is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

GNU Mailman is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
GNU Mailman. If not, see <http://www.gnu.org/licenses/>.

Spelling

The name of this software is spelled Mailman with a leading capital M
but with a lower case second m. Any other spelling is incorrect. Its full
name is GNU Mailman but is often referred colloquially as Mailman.

History

Mailman was originally developed by John Viega. Subsequent development
(through version 1.0b3) was by Ken Manheimer. Further work towards the 1.0
final release was a group effort, with the core contributors being: Barry
Warsaw, Ken Manheimer, Scott Cotton, Harald Meland, and John Viega. Version
1.0 and beyond have been primarily maintained by Barry Warsaw with
contributions from many; see the ACKNOWLEDGMENTS file for details. Jeremy
Hylton helped considerably with the Pipermail code in Mailman 2.0. Mailman
2.1 is primarily maintained by Mark Sapiro, with previous help by Tokio
Kikuchi. Barry Warsaw is the lead developer on Mailman 3.

Help

The Mailman home page is:

http://www.list.org

with mirrors at:

	http://www.gnu.org/software/mailman

	http://mailman.sf.net

The community driven wiki (including the FAQ [http://wiki.list.org/display/DOC/Frequently+Asked+Questions]) is at:

http://wiki.list.org

Other help resources, such as on-line documentation, links to the mailing
lists and archives, etc., are available at:

http://www.list.org/help.html

Bits and pieces

Mailman 3 is really a suite of 5 projects:

	Core - the core message processing and delivery system, exposing a REST API
for administrative control. Requires Python 3.4 [https://www.python.org/downloads/release/python-342/] or newer.

	Postorius - the new web user interfaces built on Django [https://www.djangoproject.com/].

	HyperKitty - the new archiver, also built on Django [https://www.djangoproject.com/].

	mailman.client - a Python binding to the core’s REST API. Compatible with
both Python 2 and Python 3.

	Bundler - a convenient installer.

Hooking up your mail server

Mailman needs to communicate with your MTA (mail transport agent
or mail server, the software which handles sending mail across the
Internet), both to accept incoming mail and to deliver outgoing mail.
Mailman itself never delivers messages to the end user. It sends them
to its immediate upstream MTA, which delivers them. In the same way,
Mailman never receives mail directly. Mail from outside always comes
via the MTA.

Mailman accepts incoming messages from the MTA using the Local Mail
Transfer Protocol [http://en.wikipedia.org/wiki/Local_Mail_Transfer_Protocol] (LMTP [http://www.faqs.org/rfcs/rfc2033.html]) interface. Mailman can use other incoming
transports, but LMTP is much more efficient than spawning a process
just to do the delivery. Most open source MTAs support LMTP for local
delivery. If yours doesn’t, and you need to use a different
interface, please ask on the mailing list or on IRC.

Mailman passes all outgoing messages to the MTA using the Simple Mail
Transfer Protocol [http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol] (SMTP [http://www.faqs.org/rfcs/rfc5321.html]).

Cooperation between Mailman and the MTA requires some configuration of
both. MTA configuration differs for each of the available MTAs, and
there is a section for each one. Instructions for Postfix and Exim (v4)
are given below. We would really appreciate a contribution of a
configuration for Sendmail, and welcome information about other popular
open source mail servers.

Configuring Mailman to communicate with the MTA is straightforward,
and basically the same for all MTAs. In your mailman.cfg file,
add (or edit) a section like the following:

[mta]
incoming: mailman.mta.postfix.LMTP
outgoing: mailman.mta.deliver.deliver
lmtp_host: 127.0.0.1
lmtp_port: 8024
smtp_host: localhost
smtp_port: 25
configuration: python:mailman.config.postfix

This configuration is for a system where Mailman and the MTA are on
the same host.

Note that the modules that configure the communication protocol (especially
incoming) are full-fledged Python modules, and may use these configuration
parameters to automatically configure the MTA to recognize the list addresses
and other attributes of the communication channel. This is why some
constraints on the format of attributes arise (e.g., lmtp_host), even
though Mailman itself has no problem with them.

The incoming and outgoing parameters identify the Python objects used
to communicate with the MTA. The python: scheme indicates that the paths
should be a dotted Python module specification. The deliver module used
in outgoing should be satisfactory for most MTAs. The postfix module
in incoming is specific to the Postfix MTA. See the section for your MTA
below for details on these parameters.

lmtp_host and lmtp_port are parameters which are used by
Mailman, but also will be passed to the MTA to identify the Mailman
host. The “same host” case is special; some MTAs (including Postfix)
do not recognize “localhost”, and need the numerical IP address. If
they are on different hosts, lmtp_host should be set to the domain
name or IP address of the Mailman host. lmtp_port is fairly
arbitrary (there is no standard port for LMTP). Use any port
convenient for your site. “8024” is as good as any, unless another
service is using it.

smtp_host and smtp_port are parameters used to identify the
MTA to Mailman. If the MTA and Mailman are on separate hosts,
smtp_host should be set to the domain name or IP address of the
MTA host. smtp_port will almost always be 25, which is the
standard port for SMTP. (Some special site configurations set it to a
different port. If you need this, you probably already know that,
know why, and what to do, too!)

Mailman also provides many other configuration variables that you can
use to tweak performance for your operating environment. See the
src/mailman/config/schema.cfg file for details.

Postfix

Postfix [http://www.postfix.org] is an open source mail server by Wietse Venema.

Mailman settings

You need to tell Mailman that you are using the Postfix mail server. In your
mailman.cfg file, add the following section:

[mta]
incoming: mailman.mta.postfix.LMTP
outgoing: mailman.mta.deliver.deliver
lmtp_host: mail.example.com
lmtp_port: 8024
smtp_host: mail.example.com
smtp_port: 25

Some of these settings are already the default, so take a look at Mailman’s
src/mailman/config/schema.cfg file for details. You’ll need to change the
lmtp_host and smtp_host to the appropriate host names of course.
Generally, Postfix will listen for incoming SMTP connections on port 25.
Postfix will deliver via LMTP over port 24 by default, however if you are not
running Mailman as root, you’ll need to change this to a higher port number,
as shown above.

Basic Postfix connections

There are several ways to hook Postfix up to Mailman, so here are the simplest
instructions. The following settings should be added to Postfix’s main.cf
file.

Mailman supports a technique called Variable Envelope Return Path [http://en.wikipedia.org/wiki/Variable_envelope_return_path] (VERP) to
disambiguate and accurately record bounces. By default Mailman’s VERP
delimiter is the + sign, so adding this setting allows Postfix to properly
handle Mailman’s VERP’d messages:

Support the default VERP delimiter.
recipient_delimiter = +

In older versions of Postfix, unknown local recipients generated a temporary
failure. It’s much better (and the default in newer Postfix releases) to
treat them as permanent failures. You can add this to your main.cf file
if needed (use the postconf [http://www.postfix.org/postconf.1.html] command to check the defaults):

unknown_local_recipient_reject_code = 550

While generally not necessary if you set recipient_delimiter as described
above, it’s better for Postfix to not treat owner- and -request
addresses specially:

owner_request_special = no

Transport maps

By default, Mailman works well with Postfix transport maps as a way to deliver
incoming messages to Mailman’s LMTP server. Mailman will automatically write
the correct transport map when its mailman aliases command is run, or
whenever a mailing list is created or removed via other commands. To connect
Postfix to Mailman’s LMTP server, add the following to Postfix’s main.cf
file:

transport_maps =
 hash:/path-to-mailman/var/data/postfix_lmtp
local_recipient_maps =
 hash:/path-to-mailman/var/data/postfix_lmtp
relay_domains =
 hash:/path-to-mailman/var/data/postfix_domains

where path-to-mailman is replaced with the actual path that you’re running
Mailman from. Setting local_recipient_maps as well as transport_maps
allows Postfix to properly reject all messages destined for non-existent local
users. Setting relay_domains [http://www.postfix.org/postconf.5.html#relay_domains] means Postfix will start to accept mail for
newly added domains even if they are not part of mydestination [http://www.postfix.org/postconf.5.html#mydestination].

Note that if you are not using virtual domains, then relay_domains [http://www.postfix.org/postconf.5.html#relay_domains] isn’t
strictly needed (but it is harmless). All you need to do in this scenario is
to make sure that Postfix accepts mail for your one domain, normally by
including it in mydestination.

Postfix documentation

For more information regarding how to configure Postfix, please see
the Postfix documentation at:

Exim

Exim 4 [http://www.exim.org/] is an MTA maintained by the University of Cambridge [http://www.cam.ac.uk/] and
distributed by most open source OS distributions.

Mailman settings

Add or edit a stanza like this in mailman.cfg:

[mta]
For all Exim4 installations.
incoming: mailman.mta.exim4.LMTP
outgoing: mailman.mta.deliver.deliver
Typical single host with MTA and Mailman configuration.
Adjust to your system's configuration.
Exim happily works with the "localhost" alias rather than IP address.
lmtp_host: localhost
smtp_host: localhost
Mailman should not be run as root.
Use any convenient port > 1024. 8024 is a convention, but can be
changed if there is a conflict with other software using that port.
lmtp_port: 8024
smtp_port rarely needs to be set.
smtp_port: 25
Exim4-specific configuration parameter defaults. Currently empty.
configuration: python:mailman.config.exim4

For further information about these settings, see
mailman/config/schema.cfg.

Exim4 configuration

The configuration presented below is mostly boilerplate that allows Exim to
automatically discover your list addresses, and route both posts and
administrative messages to the right Mailman services. For this reason, the
mailman.mta.exim4 module ends up with all methods being no-ops.

This configuration is field-tested in a Debian “conf.d”-style Exim
installation, with multiple configuration files that are assembled by a
Debian-specific script. If your Exim v4 installation is structured
differently, ignore the comments indicating location in the Debian
installation.

/etc/exim4/conf.d/main/25_mm3_macros
The colon-separated list of domains served by Mailman.
domainlist mm_domains=list.example.net

MM3_LMTP_PORT=8024

Assuming a typical source installation in /usr/local, with
links to the Mailman bin directory and so on from MM3_HOME.
MM3_HOME=/usr/local/var/mailman
MM3_UID=list
MM3_GID=list

##
The configuration below is boilerplate:
you should not need to change it.

The path to the list receipt (used as the required file when
matching list addresses)
MM3_LISTCHK=MM3_HOME/lists/${local_part}@${domain}

/etc/exim4/conf.d/router/455_mm3_router
mailman3_router:
 driver = accept
 domains = +mm_domains
 require_files = MM3_LISTCHK
 local_part_suffix_optional
 local_part_suffix = -admin : \
 -bounces : -bounces+* : \
 -confirm : -confirm+* : \
 -join : -leave : \
 -owner : -request : \
 -subscribe : -unsubscribe
 transport = mailman3_transport

/etc/exim4/conf.d/transport/55_mm3_transport
mailman3_transport:
 driver = smtp
 protocol = lmtp
 allow_localhost
 hosts = localhost
 port = MM3_LMTP_PORT

Troubleshooting

The most likely causes of failure to deliver to Mailman are typos in the
configuration, and errors in the MM3_HOME macro or the mm_domains
list. Mismatches in the LMTP port could be a cause. Finally, Exim’s router
configuration is order-sensitive. Especially if you are being tricky and
supporting Mailman 2 and Mailman 3 at the same time, you could have one shadow
the other.

Exim 4 documentation

There is copious documentation for Exim [http://www.exim.org/docs.html]. The parts most relevant to
configuring communication with Mailman 3 are the chapters on the accept
router [http://www.exim.org/exim-html-current/doc/html/spec_html/ch-the_accept_router.html] and the LMTP transport [http://www.exim.org/exim-html-current/doc/html/spec_html/ch-the_lmtp_transport.html]. Unless you are already familiar
with Exim configuration, you probably want to start with the chapter on
how Exim receives and delivers mail.

Sendmail

The core Mailman developers generally do not use Sendmail, so experience is
limited. Any and all contributions are welcome! The follow information from
a post by Gary Algier <gaa@ulticom.com> may be useful as a starting point,
although it describes Mailman 2:

I have it working fine. I recently replaced a very old implementation
of sendmail and Mailman 2 on Solaris with a new one on CentOS 6. When I
did so, I used the POSTFIX_ALIAS_CMD mechanism to automatically process
the aliases. See:

https://mail.python.org/pipermail/mailman-users/2004-June/037518.html

In mm_cfg.py:

MTA='Postfix'
POSTFIX_ALIAS_CMD = '/usr/bin/sudo /etc/mail/import-mailman-aliases'

/etc/mail/import-mailman-aliases contains:

#! /bin/sh
/bin/cp /etc/mailman/aliases /etc/mail/mailman.aliases
/usr/bin/newaliases

In /etc/sudoers.d/mailman:

Cmnd_Alias IMPORT_MAILMAN_ALIASES = /etc/mail/import-mailman-aliases
apache ALL= NOPASSWD: IMPORT_MAILMAN_ALIASES
mailman ALL= NOPASSWD: IMPORT_MAILMAN_ALIASES
Defaults!IMPORT_MAILMAN_ALIASES !requiretty

In the sendmail.mc file I changed:

define(`ALIAS_FILE', `/etc/aliases')dnl

to:

define(`ALIAS_FILE', `/etc/aliases,/etc/mail/mailman.aliases')dnl

so that the Mailman aliases would be in a separate file.

The main issue here is that Mailman 2 expects to receive messages from
the MTA via pipes, whereas Mailman 3 uses LMTP exclusively. Recent
Sendmail does support LMTP, so it’s a matter of configuring a stock
Sendmail. But rather than using aliases, it needs to be configured to
relay to the LMTP port of Mailman.

Mailman - The GNU Mailing List Management System

Copyright (C) 1998-2016 by the Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Here is a history of user visible changes to Mailman.

3.0.4 – “Show Don’t Tell”

(2016-XX-XX)

3.0.3 – “Show Don’t Tell”

(2016-03-29)

Bugs

	When approving a subscription request via the REST API, for a user who is
already a member, return an HTTP 409 Conflict code instead of the previous
server traceback (and resulting HTTP 500 code). (Closes: #193)

	Trying to subscribe an address as a list owner (or moderator or nonmember)
which is already subscribed with that role produces a server error.
Originally given by Anirudh Dahiya. (Closes #198)

	Cross-posting messages held on both lists no longer fails. (Closes #176)

	Don’t let unknown charsets crash the “approved” rule. Given by Aurélien
Bompard. (Closes #203)

	Don’t let crashes in IArchiver plugins break handlers or runners.
(Closes #208)

	Fix “None” as display name in welcome message. Given by Aditya Divekar.
(Closes #194)

	Pin the Falcon version to < 1.0.

	Fix mailman shell processing of $PYTHONSTARTUP. (Closes #224)

3.0.2 – “Show Don’t Tell”

(2016-02-08)

Bugs

	Fix IntegrityErrors raised under PostreSQL when deleting users and
addresses. Given by Aurélien Bompard.

	Fix traceback in approved handler when the moderator password is None.
Given by Aurélien Bompard.

	Allow mailing lists to have localhost names with a suffix matching the
subcommand extensions. Given by Aurélien Bompard. (Closes: #168)

	Don’t traceback if a nonexistent message-id is deleted from the message
store. Given by Aurélien Bompard, tweaked by Barry Warsaw. (Closes: #167)

	Fix membership query when multiple users are subscribed to a mailing list.
Reported by Darrell Kresge. (Closes: #190)

	Prevent moderation of messages held for a different list. (Closes: #161)

Interfaces

	IMessageStore.delete_message() no longer raises a LookupError when
you attempt to delete a nonexistent message from the message store.

REST

	When [devmode]enabled is set, the JSON output is sorted. Given by
Aurélien Bompard.

	Fixed a number of corner cases for the return codes when PUTing or PATCHing
list configuration variables. (Closes: #182)

	Don’t crash the REST server when trying to subscribe a user without a
preferred address. (Closes: #185)

3.0.1 – “Show Don’t Tell”

(2015-11-13)

Bugs

	When the mailing list’s admin_notify_mchanges is True, the list owners
now get the subscription notification. (Closes: #1)

	Fix the traceback that occurred when trying to convert a text/html
subpart to plaintext via the mimedel handler. Now, a configuration
variable [mailman]html_to_plain_text_command in the mailman.cfg file
defines the command to use. It defaults to lynx. (Closes: #109)

	Confirmation messages should not be Precedence: bulk. (Closes #75)

	The prototype archiver is not web accessible so it does not have a
list_url or permalink. Given by Aurélien Bompard.

	The REST API incorrectly parsed is_server_owner values when given
explicitly in the POST that creates a user. (Closes #136)

	By POSTing to a user resource with an existing unlinked address, you can
link the address to the user. Given by Abhilash Raj.

	Fix constraint violations on mailing list deletes affecting PostgreSQL.
Given by Abhilash Raj. (Closes #115)

	mailman command with no subcommand now prints the help text. Given by
Abhilash Raj. (Closes #137)

	The MHonArc archiver must set stdin=PIPE when calling the subprocess. Given
by Walter Doekes.

	For now, treat DeliveryMode.summary_digests the same as .mime_digests.
(Closes #141). Also, don’t enqueue a particular digest if there are no
recipients for that digest.

	For Python versions earlier than 3.5, use a compatibility layer for a
backported smtpd module which can accept non-UTF-8 data. (Closes #140)

	Bulk emails are now decorated with headers and footers. Given by Aurélien
Bompard. (Closes #145)

	Core no longer depends on the standalone mock module. (Closes: #146)

	Fix the logging of moderation reasons. Given by Aurélien Bompard. Also,
update the postauth.txt and postheld.txt templates to not include the bogus
URLs, and to include the translated moderation reasons.

	Collapse multiple Re: in Subject headers. Given by Mark Sapiro.
(Closes: #147)

	Added Trove classifiers to setup.py. (Closes: #152)

	Fix the processing of subscription confirmation messages when the mailing
list is set to confirm-then-moderate. (Closes #114)

	Fix pagination values start and total_size in the REST API. Given by
Aurélien Bompard. (Closes: #154)

	Fix UnicodeEncodeError in the hold chain when sending the authorization
email to the mailing list moderators. (Closes: #144)

3.0.0 – “Show Don’t Tell”

(2015-04-28)

Architecture

	Domains now have a list of owners, which are IUser objects, instead of
the single contact_address they used to have. IUser objects now
also have a is_server_owner flag (defaulting to False) to indicate
whether they have superuser privileges. Give by Abhliash Raj, with fixes
and refinements by Barry Warsaw. (LP: #1423756)

	Mailing list subscription policy work flow has been completely rewritten.
It now properly supports email verification and subscription confirmation
by the user, and approval by the moderator using unique tokens.
IMailingList objects now have a subscription_policy attribute.
(LP: #1095552)

	Port the REST machinery to Falcon 0.3. (LP: #1446881)

Bugs

	Fix calculation of default configuration file to use when the $var_dir
is created by mailman start. (LP: #1411435)

	When creating a user with an email address, do not create the user record
if the email address already exists. Given by Andrew Stuart.
(LP: #1418280)

	When deleting a user via REST, make sure all linked addresses are deleted.
Found by Andrew Stuart. (LP: #1419519)

	When trying to subscribe an address to a mailing list through the REST API
where a case-differing version of the address is already subscribed, return
a 409 error instead of a 500 error. Found by Ankush Sharma. (LP: #1425359)

	mailman lists --domain was not properly handling its arguments. Given
by Manish Gill. (LP: #1166911)

	When deleting a user object, make sure their preferences are also deleted.
Given by Abhishek. (LP: #1418276)

	Be sure a mailing list’s acceptable aliases are deleted when the mailing
list itself is deleted. (LP: #1432239)

	The built-in example IArchiver implementations now explicitly return
None. (LP: #1203359)

	The test suite now runs successfully again with PostgreSQL. Given by
Aurélien Bompard. (LP: #1435941)

Configuration

	When specifying a file system path in the [paths.*] section, $cfg_file can
be used to expand into the path of the -C option if given. In the
default [paths.dev] section, $var_dir is now specified relative to
$cfg_file so that it won’t accidentally be relative to the current
working directory, if -C is given.

	$cwd is now an additional substitution variable for the mailman.cfg
file’s [paths.*] sections. A new [paths.here] section is added,
which puts the var_dir in $cwd. It is made the default layout.

Documentation

	Improve the documentation describing how to run Alembic to add new schema
migrations. Given by Abhilash Raj.

REST

	Backward incompatible change: The JSON representation for pending
mailing list subscription hold now no longer includes the password
key. Also, the address key has been renamed email for consistent
terminology and other usage.

	You can now view the contents of, inject messages into, and delete messages
from the various queue directories via the <api>/queues resource.

	You can now DELETE an address. If the address is linked to a user, the
user is not delete, it is just unlinked.

	A new API is provided to support non-production testing infrastructures,
allowing a client to cull all orphaned UIDs via DELETE on
<api>/reserved/uids/orphans. Note that no guarantees of API
stability will ever be made for resources under reserved.
(LP: #1420083)

	Domains can now optionally be created with owners; domain owners can be
added after the fact; domain owners can be deleted. Also, users now have
an is_server_owner flag as part of their representation, which defaults
to False, and can be PUT and PATCH’d. Given by Abhilash Raj, with fixes
and refinements by Barry Warsaw. (LP: #1423756)

3.0 beta 5 – “Carve Away The Stone”

(2014-12-29)

Bugs

	Fixed Unicode errors in the digest runner and when sending messages to the
site owner as a fallback. Given by Aurélien Bompard. (LP: #1130957).

	Fixed Unicode errors when a message being added to the digest has non-ascii
characters in its payload, but no Content-Type header defining a charset.
Given by Aurélien Bompard. (LP: #1170347)

	Fixed messages without a text/plain part crashing the Approved rule.
Given by Aurélien Bompard. (LP: #1158721)

	Fixed getting non-ASCII filenames from RFC 2231 i18n’d messages. Given by
Aurélien Bompard. (LP: #1060951)

	Fixed AttributeError on MIME digest messages. Given by Aurélien Bompard.
(LP: #1130696)

Commands

	The mailman conf command no longer takes the -t/–sort option; the
output is always sorted.

Configuration

	The [database]migrations_path setting is removed.

Database

	The ORM layer, previously implemented with Storm, has been replaced by
SQLAlchemy, thanks to the fantastic work by Abhilash Raj and Aurélien
Bompard. Alembic is now used for all database schema migrations.

	The new logger mailman.database logs any errors at the database layer.

Development

	Python 3.4 is now the minimum requirement.

	You no longer have to create a virtual environment separately when running
the test suite. Just use tox.

	You no longer have to edit src/mailman/testing/testing.cfg to run the
test suite against PostgreSQL. See src/mailman/docs/START.rst for
details.

Interfaces

	The RFC 2369 headers added to outgoing messages are now added in sorted
order.

	Several changes to the internal API:

	IListManager.mailing_lists is guaranteed to be sorted in List-ID order.

	IDomains.mailing_lists is guaranteed to be sorted in List-ID order.

	Iteration over domains via the IDomainManager is guaranteed to be sorted
by IDomain.mail_host order.

	ITemporaryDatabase interface and all implementations are removed.

REST

	The Falcon Framework has replaced restish as the REST layer. This is an
internal change only.

	The JSON representation http_etag key uses an algorithm that is
insensitive to Python’s dictionary sort order.

	The address resource now has an additional ‘/user’ sub-resource which can
be used to GET the address’s linked user if there is one. This
sub-resource also supports POST to link an unlinked address (with an
optional ‘auto_create’ flag), and PUT to link the address to a different
user. It also supports DELETE to unlink the address. (LP: #1312884)
Given by Aurélien Bompard based on work by Nicolas Karageuzian.

	The /3.0/system path is deprecated; use /3.0/system/versions to get
the system version information.

	You can access the system configuration via the resource path
/3.0/system/configuration/<section>. This returns a dictionary with
the keys being the section’s variables and the values being their value
from mailman.cfg as verbatim strings. You can get a list of all
section names via /3.0/system/configuration which returns a dictionary
containing the http_etag and the section names as a sorted list under
the sections key. The system configuration resource is read-only.

	Member resource JSON now include the member_id as a separate key.

3.0 beta 4 – “Time and Motion”

(2014-04-22)

Development

	Mailman 3 no longer uses zc.buildout and tests are now run by the
nose2 test runner. See src/mailman/docs/START.rst for details on
how to build Mailman and run the test suite. Also, use -P to select a
test pattern and -E to enable stderr debugging in runners.

	Use the enum34 package instead of flufl.enum.

	Use setuptools instead of distribute, since the latter is defunct.

REST

	Add reply_to_address and first_strip_reply_to as writable
attributes of a mailing list’s configuration. (LP: #1157881)

	Support pagination of some large collections (lists, users, members).
[Florian Fuchs] (LP: #1156529)

	Expose hide_address to the .../preferences REST API.
[Sneha Priscilla.] (LP: #1203519)

	Mailing lists can now individually enable or disable any archiver available
site-wide. [Joanna Skrzeszewska] (LP: #1158040)

	Addresses can be added to existing users, including display names, via the
REST API. [Florian Fuchs]

	Fixed a crash in the REST server when searching for nonmembers via
/find which we’ve never seen before, because those members only have an
address record, not a user record. This requires a small change in the API
where the JSON response’s address key now contains the URL to the
address resource, the new email key contains the email address as a
string, and the user key is optional.

Commands

	mailman conf now has a -t/–sort flag which sorts the output by section
and then key. [Karl-Aksel Puulmann and David Soto] (LP: 1162492)

	Greatly improve the fidelity of the Mailman 2.1 list importer functionality
(i.e. mailman import21). [Aurélien Bompard].

Configuration

	Add support for the Exim 4 MTA. [Stephen Turnbull]

	When creating the initial file system layout in var, e.g. via
bin/mailman info, add an var/etc/mailman.cfg file if one does not
already exist. Also, when initializing the system, look for that file as
the configuration file, just after ./mailman.cfg and before
~/.mailman.cfg. (LP: #1157861)

Database

	The bounceevent table now uses list-ids to cross-reference the mailing
list, to match other tables. Similarly for the IBounceEvent interface.

	Added a listarchiver table to support list-specific archivers.

Bugs

	Non-queue runners should not create var/queue subdirectories.
[Sandesh Kumar Agrawal] (LP: #1095422)

	Creation of lists with upper case names should be coerced to lower case.
(LP: #1117176)

	Fix REST server crash on mailman reopen due to no interception of
signals. (LP: #1184376)

	Add subject_prefix to the IMailingList interface, and clarify the
docstring for display_name. (LP: #1181498)

	Fix importation from MM2.1 to MM3 of the archive policy.
[Aurélien Bompard] (LP: #1227658)

	Fix non-member moderation rule to prefer a member sender if both members
and non-members are in the message’s sender list. [Aurélien Bompard]
(LP: #1291452)

	Fix IntegrityError (against PostgreSQL) when deleting a list with content
filters. [Aurélien Bompard] (LP: #1117174)

	Fix test isolation bug in languages.rst.
[Piotr Kasprzyk] (LP: #1308769)

3.0 beta 3 – “Here Again”

(2012-12-31)

Compatibility

	Python 2.7 is now required. Python 2.6 is no longer officially supported.
The code base is now also python2.7 -3 clean, although there are still
some warnings in 3rd party dependencies. (LP: #1073506)

REST

	API change: The JSON representation for held messages no longer
includes the data key. The values in this dictionary are flatted into
the top-level JSON representation. The key key is remove since it’s
redundant. Use message_id for held messages, and address for held
subscriptions/unsubscriptions. The following _mod_* keys are inserted
without the _mod_ prefix:

	_mod_subject -> subject

	_mod_hold_date -> hold_date

	_mod_reason -> reason

	_mod_sender -> sender

	_mod_message_id -> message_id

	List styles are supported through the REST API. Get the list of available
styles (by name) via …/lists/styles. Create a list in a specific style
by using POST data style_name=<style>. (LP: #975692)

	Allow the getting/setting of IMailingList.subject_prefix via the REST API
(given by Terri Oda). (LP: #1062893)

	Expose a REST API for membership change (subscriptions and unsubscriptions)
moderation. (LP: #1090753)

	Add list_id to JSON representation for a mailing list (given by Jimmy
Bergman).

	The canonical resource for a mailing list (and thus its self_link) is now
the URL with the list-id. To reference a mailing list, the list-id url is
preferred, but for backward compatibility, the posting address is still
accepted.

	You can now PUT and PATCH on user resources to change the user’s display
name or password. For passwords, you pass in the clear text password and
Mailman will hash it before storing.

	You can now verify and unverify an email address through the REST API.
POST to …/addresses/<email>/verify and …/addresses/<email>/unverify
respectively. The POST data is ignored. It is not an error to verify or
unverify an address more than once, but verifying an already verified
address does not change its .verified_on date. (LP: #1054730)

	Deleting a user through the REST API also deletes all the user’s linked
addresses and memberships. (LP: #1074374)

	A user’s password can be verified by POSTing to …/user/<id>/login. The
data must contain a single parameter cleartext_password and if this
matches, a 204 (No Content) will be returned, otherwise a 403 (Forbidden)
is returned. (LP: #1065447)

Configuration

	[passlib]path configuration variable renamed to [passlib]configuration.

	Postfix-specific configurations in the [mta] section are moved to a
separate file, named by the [mta]configuration variable.

	In the new postfix.cfg file, postfix_map_cmd is renamed to
postmap_command.

	The default list style is renamed to legacy-default and a new
legacy-announce style is added. This is similar to the legacy-default
except set up for announce-only lists.

Database

	The ban table now uses list-ids to cross-reference the mailing list,
since these cannot change even if the mailing list is moved or renamed.

	The following columns were unused and have been removed:

	mailinglist.new_member_options

	mailinglist.send_reminders

	mailinglist.subscribe_policy

	mailinglist.unsubscribe_policy

	mailinglist.subscribe_auto_approval

	mailinglist.private_roster

	mailinglist.admin_member_chunksize

Interfaces

	The IBanManager is no longer a global utility. Instead, you adapt an
IMailingList to an IBanManager to manage the bans for a specific
mailing list. To manage the global bans, adapt None.

Commands

	bin/mailman aliases loses the –output, –format, and –simple
arguments, and adds a –directory argument. This is necessary to support
the Postfix relay_domains support.

	bin/mailman start was passing the wrong relative path to its runner
subprocesses when -C was given. (LP: #982551)

	bin/runner command has been simplified and its command line options
reduced. Now, only one -r/–runner option may be provided and the
round-robin feature has been removed.

Other

	Added support for Postfix relay_domains setting for better virtual domain
support. [Jimmy Bergman].

	Two new events are triggered on membership changes: SubscriptionEvent
when a new member joins a mailing list, and an UnsubscriptionEvent when a
member leaves a mailing list. (LP: #1047286)

	Improve the –help text for the start, stop, restart, and reopen
subcommands. (LP: #1035033)

Bugs

	Fixed send_goodbye_message(). (LP: #1091321)

	Fixed REST server crash on reopen command. Identification and test
provided by Aurélien Bompard. (LP: #1184376)

3.0 beta 2 – “Freeze”

(2012-09-05)

Architecture

	The link between members and the mailing lists they are subscribed to, is
now via the RFC 2369 list_id instead of the fqdn listname (i.e. posting
address). This is because while the posting address can change if the
mailing list is moved to a new server, the list id is fixed.
(LP: #1024509)

	IListManager.get_by_list_id() added.

	IListManager.list_ids added.

	IMailingList.list_id added.

	Several internal APIs that accepted fqdn list names now require list ids,
e.g. ISubscriptionService.join() and .find_members().

	IMember.list_id attribute added; .mailing_list is now an alias that
retrieves and returns the IMailingList.

	passlib [http://packages.python.org/passlib/index.html] is now used for all password hashing instead of flufl.password.
The default hash is sha512_crypt. (LP: #1015758)

	Internally, all datetimes are kept in the UTC timezone, however because of
LP: #280708, they are stored in the database in naive format.

	received_time is now added to the message metadata by the LMTP runner
instead of by Switchboard.enqueue(). This latter no longer depends on
received_time in the metadata.

	The ArchiveRunner no longer acquires a lock before it calls the
individual archiver implementations, since not all of them need a lock. If
they do, the implementations must acquire said lock themselves.

	The news runner and queue has been renamed to the more accurate nntp.
The runner has also been ported to Mailman 3 (LP: #967409). Beta testers
can safely remove $var_dir/queue/news.

	A mailing list’s moderator password is no longer stored in the clear; it
is hashed with the currently selected scheme.

	An AddressVerificationEvent is triggered when an IAddress is verified
or unverified. (LP: #975698)

	A PasswordChangeEvent is triggered when an IUser’s password changes.
(LP: #975700)

	When a queue runner gets an exception in its _dispose() method, a
RunnerCrashEvent is triggered, which contains references to the queue
runner, mailing list, message, metadata, and exception. Interested parties
can subscribe to that zope.event for notification.

	Events renamed and moved:
* mailman.chains.accept.AcceptNotification
* mailman.chains.base.ChainNotification
* mailman.chains.discard.DiscardNotification
* mailman.chains.hold.HoldNotification
* mailman.chains.owner.OwnerNotification
* mailman.chains.reject.RejectNotification
changed to (respectively):
* mailman.interfaces.chains.AcceptEvent
* mailman.interfaces.chains.ChainEvent
* mailman.interfaces.chains.DiscardEvent
* mailman.interfaces.chains.HoldEvent
* mailman.interfaces.chains.AcceptOwnerEvent
* mailman.interfaces.chains.RejectEvent

	A ConfigurationUpdatedEvent is triggered when the system-wide global
configuration stack is pushed or popped.

	The policy for archiving has now been collapsed into a single enum, called
ArchivePolicy. This describes the three states of never archive, archive
privately, and archive_publicly. (LP: #967238)

Database

	Schema migrations (LP: #971013)

	mailinglist.include_list_post_header -> allow_list_posts

	mailinglist.news_prefix_subject_too -> nntp_prefix_subject_too

	mailinglist.news_moderation -> newsgroup_moderation

	mailinglist.archive and mailinglist.archive_private have been collapsed
into archive_policy.

	mailinglist.nntp_host has been removed.

	mailinglist.generic_nonmember_action has been removed (LP: #975696)

	Schema migrations (LP: #1024509)
- member.mailing_list -> list_id

	The PostgreSQL port of the schema accidentally added a moderation_callback
column to the mailinglist table. Since this is unused in Mailman, it was
simply commented out of the base schema for PostgreSQL.

REST

	Expose archive_policy in the REST API. Contributed by Alexander
Sulfrian. (LP: #1039129)

Configuration

	New configuration variables clobber_date and clobber_skew supported in
every [archiver.<name>] section. These are used to determine under what
circumstances a message destined for a specific archiver should have its
Date: header clobbered. (LP: #963612)

	With the switch to passlib [http://packages.python.org/passlib/index.html], [passwords]password_scheme has been
removed. Instead use [passwords]path to specify where to find the
passlib.cfg file. See the comments in schema.cfg for details.

	Configuration schema variable changes:
* [nntp]username -> [nntp]user
* [nntp]port (added)

	Header check specifications in the mailman.cfg file have changed quite
bit. The previous [spam.header.foo] sections have been removed.
Instead, there’s a new [antispam] section that contains a header_checks
variable. This variable takes multiple lines of Header: regexp values,
one per line. There is also a new jump_chain variable which names the
chain to jump to should any of the header checks (including the
list-specific, and programmatically added ones) match.

Documentation

	Some additional documentation on related components such as Postorius and
hyperkitty have been added, given by Stephen J Turnbull.

Bug fixes

	Fixed the RFC 1153 digest footer to be compliant. (LP: #887610)

	Fixed a UnicodeError with non-ascii message bodies in the approved rule,
given by Mark Sapiro. (LP: #949924)

	Fixed a typo when returning the configuration file’s header match checks.
(LP: #953497)

	List-Post should be NO when posting is not allowed. (LP: #987563)

	Non-unicode values in msgdata broke pending requests. (LP: #1031391)

	Show devmode in bin/mailman info output. (LP: #1035028)

	Fix residual references to the old IMailingList archive variables.
(LP: #1031393)

3.0 beta 1 – “The Twilight Zone”

(2012-03-23)

Architecture

	Schema migrations have been implemented.

	Implement the style manager as a utility instead of an attribute hanging
off the mailman.config.config object.

	PostgreSQL support contributed by Stephen A. Goss. (LP: #860159)

	Separate out the RFC 2369 header adding handler.

	Dynamically calculate the List-Id header instead of storing it in the
database. This means it cannot be changed.

	Major redesign of the template search system, fixing LP: #788309. $var_dir
is now used when search for all template overrides, site, domain, or
mailing list. The in-tree English templates are used only as a last
fallback.

	Support downloading templates by URI, including mailman:// URIs. This is
used in welcome and goodbye messages, as well as regular and digest headers
and footers, and supports both language and mailing list specifications.
E.g. mailman:///test@example.com/it/welcome.txt

	$user_password is no longer supported as a placeholder in headers and
footers.

	Mailing lists get multiple chains and pipelines. For example, normal
postings go through the posting_chain while messages to owners to through
owners_chain. The default built-in chain is renamed to
default-posting-chain while the built-in pipeline is renamed
default-posting-pipeline.

	The experimental maildir runner is removed. Use LMTP.

	The LMTP server now requires that the incoming message have a Message-ID,
otherwise it rejects the message with a 550 error. Also, the LMTP server
adds the X-Message-ID-Hash header automatically. The inject cli
command will also add the X-Message-ID-Hash header, but it will craft a
Message-ID header first if one is missing from the injected text. Also,
inject will always set the correct value for the original_size
attribute on the message object, instead of trusting a possibly incorrect
value if it’s already set. The individual IArchiver implementations no
longer set the X-Message-ID-Hash header.

	The Prototype archiver now stores its files in maildir format inside of
$var_dir/archives/prototype, given by Toshio Kuratomi.

	Improved “8 mile high” document distilled by Stephen J Turnbull from the
Pycon 2012 Mailman 3 sprint. Also improvements to the Sphinx build given
by Andrea Crotti (LP: #954718).

	Pipermail has been eradicated.

	Configuration variable [mailman]filtered_messages_are_preservable
controls whether messages which have their top-level Content-Type
filtered out can be preserved in the bad queue by list owners.

	Configuration section [scrubber] removed, as is the scrubber handler.
This handler was essentially incompatible with Mailman 3 since it required
coordination with Pipermail to store attachments on disk.

Database

	Schema changes:
- welcome_msg -> welcome_message_uri
- goodbye_msg -> goodbye_message_uri
- send_welcome_msg -> send_welcome_message
- send_goodbye_msg -> send_goodbye_message
- msg_header -> header_uri
- msg_footer -> footer_uri
- digest_header -> digest_header_uri
- digest_footer -> digest_footer_uri
- start_chain -> posting_chain
- pipeline -> posting_pipeline
- real_name -> display_name (mailinglist, user, address)

	Schema additions:
- mailinglist.filter_action
- mailinglist.owner_chain
- mailinglist.owner_pipeline

REST

	Held messages can now be moderated through the REST API. Mailing list
resources now accept a held path component. GETing this returns all held
messages for the mailing list. POSTing to a specific request id under this
url can dispose of the message using Action enums.

	Mailing list resources now have a member_count attribute which gives the
number of subscribed members. Given by Toshio Kuratomi.

Interfaces

	Add property IUserManager.members to return all IMembers in the system.

	Add property IListmanager.name_components which returns 2-tuples for
every mailing list as (list_name, mail_host).

	Remove previously deprecated IListManager.get_mailing_lists().

	IMailTransportAgentAliases now explicitly accepts duck-typed arguments.

	IRequests interface is removed. Now just use adaptation from
IListRequests directly (which takes an IMailingList object).

	handle_message() now allows for Action.hold which is synonymous with
Action.defer (since the message is already being held).

	IListRequests.get_request() now takes an optional request_type
argument to narrow the search for the given request.

	New ITemplateLoader utility.

	ILanguageManager.add() returns the ILanguage object just created.

	IMailinglist.decorators removed; it was unused

	IMailingList.real_name -> IMailingList.display_name

	IUser.real_name -> IUser.display_name

	IAddress.real_name -> IAddress.display_name

	Add property IRoster.member_count.

Commands

	IPython support in bin/mailman shell contributed by Andrea Crotti.
(LP: #949926).

	The mailman.cfg configuration file will now automatically be detected if
it exists in an etc directory which is a sibling of argv0.

	bin/mailman shell is an alias for withlist.

	The confirm email command now properly handles Re:-like prefixes, even
if they contain non-ASCII characters. (LP: #685261)

	The join email command no longer accepts an address= argument. Its
digest= argument now accepts the following values: no (for regular
delivery), mime, or plain.

	Added a help email command.

	A welcome message is sent when the user confirms their subscription via
email.

	Global -C option now accepts an absolute path to the configuration
file. Given by Andrea Crotti. (LP: #953707)

Bug fixes

	Subscription disabled probe warning notification messages are now sent
without a Precedence: header. Given by Mark Sapiro. (LP: #808821)

	Fixed KeyError in retry runner, contributed by Stephen A. Goss.
(LP: #872391)

	Fixed bogus use of bounce_processing attribute (should have been
process_bounces, with thanks to Vincent Fretin. (LP: #876774)

	Fix test_moderation for timezones east of UTC+0000, given by blacktav.
(LP: #890675)

3.0 alpha 8 – “Where’s My Thing?”

(2011-09-23)

Architecture

	Factor out bounce detection to flufl.bounce.

	Unrecognized bounces can now also be forwarded to the site owner.

	mailman.qrunner log is renamed to mailman.runner

	master-qrunner.lck -> master.lck

	master-qrunner.pid -> master.pid

	Four new events are created, and notifications are sent during mailing list
lifecycle changes:
- ListCreatingEvent - sent before the mailing list is created
- ListCreatedEvent - sent after the mailing list is created
- ListDeletingEvent - sent before the mailing list is deleted
- ListDeletedEvent - sent after the mailing list is deleted

	Four new events are created, and notifications are sent during domain
lifecycle changes:
- DomainCreatingEvent - sent before the domain is created
- DomainCreatedEvent - sent after the domain is created
- DomainDeletingEvent - sent before the domain is deleted
- DomainDeletedEvent - sent after the domain is deleted

	Using the above events, when a domain is deleted, associated mailing lists
are deleted. (LP: #837526)

	IDomain.email_host -> .mail_host (LP: #831660)

	User and Member ids are now proper UUIDs.

	Improved the way enums are stored in the database, so that they are more
explicitly expressed in the code, and more database efficient.

REST

	Preferences for addresses, users, and members can be accessed, changed, and
deleted through the REST interface. Hierarchical, combined preferences for
members, and system preferences can be read through the REST interface.
(LP: #821438)

	The IMailingList attribute host_name has been renamed to mail_host
for consistency. This changes the REST API for mailing list
resources. (LP: #787599)

	New REST resource http://…/members/find [http://.../members/find] can be POSTed to in order to find
member records. Optional arguments are subscriber (email address to
search for), fqdn_listname, and role (i.e. MemberRole). (LP: #799612)

	You can now query or change a member’s delivery_mode attribute through
the REST API (LP: #833132). Given by Stephen A. Goss.

	New REST resource http://…/<domain>/lists can be GETed in order to find
all the mailing lists in a specific domain (LP: #829765). Given by
Stephen A. Goss.

	Fixed /lists/<fqdn_listname>/<role>/<email> (LP: #825570)

	Remove role plurals from /lists/<fqdn_listname/rosters/<role>

	Fixed incorrect error code for /members/<bogus> (LP: #821020). Given by
Stephen A. Goss.

	DELETE users via the REST API. (LP: #820660)

	Moderators and owners can be added via REST (LP: #834130). Given by
Stephen A. Goss.

	Getting the roster or configuration of a nonexistent list did not give a
404 error (LP: #837676). Given by Stephen A. Goss.

	PATCHing an invalid attribute on a member did not give a 400 error
(LP: #833376). Given by Stephen A. Goss.

	Getting the memberships for a non-existent address did not give a 404 error
(LP: #848103). Given by Stephen A. Goss.

Commands

	bin/qrunner is renamed to bin/runner.

	bin/mailman aliases gains -f and -s options.

	bin/mailman create no longer allows a list to be created with bogus owner
addresses. (LP: #778687)

	bin/mailman start –force option is fixed. (LP: #869317)

Documentation

	Update the COPYING file to contain the GPLv3. (LP: #790994)

	Major terminology change: ban the terms “queue runners” and “qrunners” since
not all runners manage queue directories. Just call them “runners”. Also,
the master is now just called “the master runner”.

Testing

	New configuration variable in [devmode] section, called wait which sets
the timeout value used in the test suite for starting up subprocesses.

	Handle SIGTERM in the REST server so that the test suite always shuts down
correctly. (LP: #770328)

Other bugs and changes

	Moderating a message with Action.accept now sends the message. (LP: #827697)

	Fix AttributeError triggered by i18n call in autorespond_to_sender()
(LP: #827060)

	Local timezone in X-Mailman-Approved-At caused test failure. (LP: #832404)

	InvalidEmailAddressError no longer repr()’s its value.

	Rewrote a test for compatibility between Python 2.6 and 2.7. (LP: #833208)

	Fixed Postfix alias file generation when more than one mailing list
exists. (LP: #874929). Given by Vincent Fretin.

3.0 alpha 7 – “Mission”

(2011-04-29)

Architecture

	Significant updates to the subscription model. Members can now subscribe
with a preferred address, and changes to that will be immediately reflected
in mailing list subscriptions. Users who subscribe with an explicit
address can easily change to a different address, as long as that address
is verified. (LP: #643949)

	IUsers and IMembers are now assigned a unique, random, immutable id.

	IUsers now have created_on and .preferred_address properties.

	IMembers now have a .user attribute for easy access to the subscribed user.

	When created with add_member(), passwords are always stored encrypted.

	In all interfaces, “email” refers to the textual email address while
“address” refers to the IAddress object.

	mailman.chains.base.Chain no longer self registers.

	New member and nonmember moderation rules and chains. This effectively
ports moderation rules from Mailman 2 and replaces attributes such as
member_moderation_action, default_member_moderation, and
generic_nonmember_action. Now, nonmembers exist as subscriptions on a
mailing list and members have a moderation_action attribute which describes
the disposition for postings from that address.

	Member.is_moderated was removed because of the above change.

	default_member_action and default_nonmember_action were added to mailing
lists.

	All sender addresses are registered (unverified) with the user manager by
the incoming queue runner. This way, nonmember moderation rules will
always have an IAddress that they can subscribe to the list (as
MemberRole.nonmember).

	Support for SMTP AUTH added via smtp_user and smtp_pass configuration
variables in the [mta] section. (LP: #490044)

	IEmailValidator interface for pluggable validation of email addresses.

	.subscribe() is moved from the IAddress to the IMailingList

	IAddresses get their registered_on attribute set when the object is created.

Configuration

	[devmode] section gets a new ‘testing’ variable.

	Added password_scheme and password_length settings for defining the
default password encryption scheme.

	creator_pw_file and site_pw_file are removed.

Commands

	‘bin/mailman start’ does a better job of producing an error when Mailman is
already running.

	‘bin/mailman status’ added for providing command line status on the master
queue runner watcher process.

	‘bin/mailman info’ now prints the REST root url and credentials.

	mmsitepass removed; there is no more site password.

REST

	Add Basic Auth support for REST API security. (Jimmy Bergman)

	Include the fqdn_listname and email address in the member JSON
representation.

	Added reply_goes_to_list, send_welcome_msg, welcome_msg,
default_member_moderation to the mailing list’s writable attributes in the
REST service. (Jimmy Bergman)

	Expose the new membership model to the REST API. Canonical member resource
URLs are now much shorter and live in their own top-level namespace instead
of within the mailing list’s namespace.

	/addresses/<email>/memberships gets all the memberships for a given email
address.

	/users is a new top-level URL under which user information can be
accessed. Posting to this creates new users.

	Users can subscribe to mailing lists through the REST API.

	Domains can be deleted via the REST API.

	PUT and PATCH to a list configuration now returns a 204 (No Content).

Build

	Support Python 2.7. (LP: #667472)

	Disable site-packages in buildout.cfg because of LP: #659231.

	Don’t include eggs/ or parts/ in the source tarball. (LP: #656946)

	flufl.lock is now required instead of locknix.

Bugs fixed

	Typo in scan_message(). (LP: #645897)

	Typo in add_member(). (LP: #710182) (Florian Fuchs)

	Re-enable bounce detectors. (LP: #756943)

	Clean up many pyflakes problems; ditching pylint.

3.0 alpha 6 – “Cut to the Chase”

(2010-09-20)

Commands

	The functionality of ‘bin/list_members’ has been moved to
‘bin/mailman members’.

	‘bin/mailman info’ -v/–verbose output displays the file system
layout paths Mailman is currently configured to use.

Configuration

	You can now configure the paths Mailman uses for queue files, lock files,
data files, etc. via the configuration file. Define a file system ‘layout’
and then select that layout in the [mailman] section. Default layouts
include ‘local’ for putting everything in /var/tmp/mailman, ‘dev’ for local
development, and ‘fhs’ for Filesystem Hierarchy Standard 2.3 (LP #490144).

	Queue file directories now live in $var_dir/queues.

REST

	lazr.restful has been replaced by restish as the REST publishing technology
used by Mailman.

	New REST API for getting all the members of a roster for a specific mailing
list.

	New REST API for getting and setting a mailing list’s configuration. GET
and PUT are supported to retrieve the current configuration, and set all
the list’s writable attributes in one request. PATCH is supported to
partially update a mailing list’s configuration. Individual options can be
set and retrieved by using subpaths.

	Subscribing an already subscribed member via REST now returns a 409 HTTP
error. LP: #552917

	Fixed a bug when deleting a list via the REST API. LP: #601899

Architecture

	X-BeenThere header is removed.

	Mailman no longer touches the Sender or Errors-To headers.

	Chain actions can now fire Zope events in their _process()
implementations.

	Environment variable $MAILMAN_VAR_DIR can be used to control the var/
directory for Mailman’s runtime files. New environment variable
$MAILMAN_UNDER_MASTER_CONTROL is used instead of the qrunner’s –subproc/-s
option.

Miscellaneous

	Allow X-Approved and X-Approve headers, equivalent to Approved and
Approve. LP: #557750

	Various test failure fixes. LP: #543618, LP: #544477

	List-Post header is retained in MIME digest messages. LP: #526143

	Importing from a Mailman 2.1.x list is partially supported.

3.0 alpha 5 – “Distant Early Warning”

(2010-01-18)

REST

	Add REST API for subscription services. You can now:

	list all members in all mailing lists

	subscribe (and possibly register) an address to a mailing list

	unsubscribe an address from mailing list

Commands

	‘bin/dumpdb’ is now ‘bin/mailman qfile’

	‘bin/unshunt’ is now ‘bin/mailman unshunt’

	Mailman now properly handles the ‘-join’, ‘-leave’, and ‘-confirm’ email
commands and sub-addresses. ‘-subscribe’ and ‘-unsubscribe’ are aliases
for ‘-join’ and ‘-leave’ respectively.

Configuration

	devmode settings now live in their own [devmode] section.

	Mailman now searches for a configuration file using this search order. The
first file that exists is used.

	-C config command line argument

	$MAILMAN_CONFIG_FILE environment variable

	./mailman.cfg

	~/.mailman.cfg

	/etc/mailman.cfg

3.0 alpha 4 – “Vital Signs”

(2009-11-28)

Commands

	‘bin/inject’ is now ‘bin/mailman inject’, with some changes

	‘bin/mailmanctl’ is now ‘bin/mailman start|stop|reopen|restart’

	‘bin/mailman version’ is added (output same as ‘bin/mailman –version’)

	‘bin/mailman members’ command line arguments have changed. It also
now ignores blank lines and lines that start with #. It also no longer
quits when it sees an address that’s already subscribed.

	‘bin/withlist’ is now ‘bin/mailman withlist’, and its command line
arguments have changed.

	‘bin/mailman lists’ command line arguments have changed.

	‘bin/genaliases’ is now ‘bin/mailman aliases’

Architecture

	A near complete rewrite of the low-level SMTP delivery machinery. This
greatly improves readability, testability, reuse and extensibility. Almost
all the old functionality has been retained. The smtp_direct.py handler is
gone.

	Refactor model objects into the mailman.model subpackage.

	Refactor most of the i18n infrastructure into a separate flufl.i18n package.

	Switch from setuptools to distribute.

	Remove the dependency on setuptools_bzr

	Do not create the .mo files during setup.

Configuration

	All log files now have a ‘.log’ suffix by default.

	The substitution placeholders in the verp_format configuration variable
have been renamed.

	Add a devmode configuration variable that changes some basic behavior.
Most importantly, it allows you to set a low-level SMTP recipient for all
mail for testing purposes. See also devmode_recipient.

3.0 alpha 3 – “Working Man”

(2009-08-21)

Configuration

	Configuration is now done through lazr.config. Defaults.py is
dead. lazr.config files are essentially hierarchical ini files.

	Domains are now stored in the database instead of in the configuration file.

	pre- and post- initialization hooks are now available to plugins. Specify
additional hooks to run in the configuration file.

	Add the environment variable $MAILMAN_CONFIG_FILE which overrides the -C
command line option.

	Make LMTP more compliant with Postfix docs (Patrick Koetter)

	Added a NullMTA for mail servers like Exim which just work automatically.

Architecture

	‘bin/mailman’ is a new super-command for managing Mailman from the command
line. Some older bin scripts have been converted, with more to come.

	Mailman now has an administrative REST interface which can be used to get
information from and manage Mailman remotely.

	Back port of Mailman 2.1’s limit on .bak file restoration. After 3
restores, the file is moved to the bad queue, with a .psv extension. (Mark
Sapiro)

	Digest creation is moved into a new queue runner so it doesn’t block main
message processing.

Other changes

	bin/make_instance is no longer necessary, and removed

	The debug log is turned up to info by default to reduce log file spam.

Building and installation

	All doc tests can now be turned into documentation, via Sphinx. Just run
bin/docs after bin/buildout.

3.0 alpha 2 – “Grand Designs”

(03-Jan-2009)

Licensing

	Mailman 3 is now licensed under the GPLv3.

Bug fixes

	Changed bin/arch to attempt to open the mbox before wiping the old
archive. Launchpad bug #280418.

	Added digest.mbox and pending.pck to the ‘list’ files checked by
check_perms. Launchpad bug #284802.

Architecture

	Converted to using zope.testing as the test infrastructure. Use bin/test
now to run the full test suite.
<http://pypi.python.org/pypi/zope.testing/3.7.1>

	Partially converted to using lazr.config as the new configuration
regime. Not everything has been converted yet, so some manual editing
of mailman/Defaults.py is required. This will be rectified in future
versions. <http://launchpad.net/lazr.config>

	All web-related stuff is moved to its own directory, effectively moving
it out of the way for now.

	The email command infrastructure has been reworked to play more nicely
with the plug-in architecture. Not all commands have yet been
converted.

Other changes

	The LMTP server now properly calculates the message’s original size.

	For command line scripts, -C names the configuration file to use. For
convenient testing, if -C is not given, then the environment variable
MAILMAN_CONFIG_FILE is consulted.

	Support added for a local MHonArc archiver, as well as archiving
automatically in the remote Mail-Archive.com service.

	The permalink proposal for supporting RFC 5064 has been adopted.

	Mailing lists no longer have a .web_page_url attribute; this is taken from
the mailing list’s domain’s base_url attribute.

	Incoming MTA selection is now taken from the config file instead of
plugins. An MTA for Postfix+LMTP is added. bin/genaliases works again.

	If a message has no Message-ID, the stock archivers will return None for
the permalink now instead of raising an assertion.

	IArchiver no longer has an is_enabled property; this is taken from the
configuration file now.

Installation

	Python 2.6 is the minimal requirement.

	Converted to using zc.buildout as the build infrastructure. See
docs/ALPHA.txt for details.
<http://pypi.python.org/pypi/zc.buildout/1.1.1>

3.0 alpha 1 – “Leave That Thing Alone”

(08-Apr-2008)

User visible changes

	So called ‘new style’ subject prefixing is the default now, and the only
option. When a list’s subject prefix is added, it’s always done so before
any Re: tag, not after. E.g. ‘[My List] Re: The subject’.

	RFC 2369 headers List-Subscribe and List-Unsubscribe now use the preferred
-join and -leave addresses instead of the -request address with a subject
value.

Configuration

	There is no more separate configure; make; make install step. Mailman 3.0
is a setuptools package.

	Mailman can now be configured via a ‘mailman.cfg’ file which lives in
$VAR_PREFIX/etc. This is used to separate the configuration from the
source directory. Alternative configuration files can be specified via
-C/–config for most command line scripts. mailman.cfg contains Python
code. mm_cfg.py is no more. You do not need to import Defaults.py in
etc/mailman.cfg. You should still consult Defaults.py for the list of site
configuration variables available to you.

See the etc/mailman.cfg.sample file.

	PUBLIC_ARCHIVE_URL and DEFAULT_SUBJECT_PREFIX now takes $-string
substitutions instead of %-string substitutions. See documentation in
Defaults.py.in for details.

	Message headers and footers now only accept $-string substitutions;
%-strings are no longer supported. The substitution variable
‘_internal_name’ has been removed; use $list_name or $real_name
instead. The substitution variable $fqdn_listname has been added.
DEFAULT_MSG_FOOTER in Defaults.py.in has been updated accordingly.

	The KNOWN_SPAMMERS global variable is replaced with HEADER_MATCHES. The
mailing list’s header_filter_rules variable is replaced with header_matches
which has the same semantics as HEADER_MATCHES, but is list-specific.

	DEFAULT_MAIL_COMMANDS_MAX_LINES -> EMAIL_COMMANDS_MAX_LINES

	All SMTP_LOG_* templates use $-strings and all consistently write the
Message-ID as the first item in the log entry.

	DELIVERY_MODULE now names a handler, not a module (yes, this is a
misnomer, but it will likely change again before the final release).

Architecture

	Internally, all strings are Unicodes.

	Implementation of a chain-of-rules based approach for deciding whether a
message should initially be accepted, held for approval, rejected/bounced,
or discarded. This replaces most of the disposition handlers in the
pipeline. The IncomingRunner now only processes message through the rule
chains, and once accepted, places the message in a new queue processed by
the PipelineRunner.

	Substantially reworked the entire queue runner process management,
including mailmanctl, a new master script, and the qrunners. This should
be much more robust and reliable now.

	The Storm ORM is used for data storage, with the SQLite backend as the
default relational database.

	Zope interfaces are used to describe the major components.

	Users are now stored in a unified database, and shared across all mailing
lists.

	Mailman’s web interface is now WSGI compliant. WSGI is a Python standard
(PEP 333) allowing web applications to be (more) easily integrated with any
number of existing Python web application frameworks. For more information
see:

http://www.wsgi.org/wsgi
http://www.python.org/dev/peps/pep-0333/

Mailman can still be run as a traditional CGI program of course.

	Mailman now provides an LMTP server for more efficient integration with
supporting mail servers (e.g. Postfix, Sendmail). The Local Mail Transport
Protocol is defined in RFC 2033:

http://www.faqs.org/rfcs/rfc2033.html

	Virtual domains are now fully supported in that mailing lists of the same
name can exist in more than one domain. This is accomplished by renaming
the lists/ and archives/ subdirectories after the list’s posting address.
For example, data for list foo in example.com and list foo in example.org
will be stored in lists/foo@example.com and lists/foo@example.org.

For Postfix or manual MTA users, you will need to regenerate your mail
aliases. Use bin/genaliases.

VIRTUAL_HOST_OVERVIEW has been removed, effectively Mailman now operates
as if it were always enabled. If your site has more than one domain,
you must configure all domains by using add_domain() in your
etc/mailman.cfg flie (see below – add_virtual() has been removed).

	If you had customizations based on Site.py, you will need to re-implement
them. Site.py has been removed.

	The site list is no more. You can remove your ‘mailman’ site list unless
you want to retain it for other purposes, but it is no longer used (or
required) by Mailman. You should set NO_REPLY_ADDRESS to an address that
throws away replies, and you should set SITE_OWNER_ADDRESS to an email
address that reaches the person ultimately responsible for the Mailman
installation. The MAILMAN_SITE_LIST variable has been removed.

	qrunners no longer restart on SIGINT; SIGUSR1 is used for that now.

Internationalization Big Changes

	Translators should work only on messages/<lang>/LC_MESSAGES/mailman.po.
Templates files are generated from mailman.po during the build process.

New Features

	Confirmed member change of address is logged in the ‘subscribe’ log, and if
admin_notify_mchanges is true, a notice is sent to the list owner using a
new adminaddrchgack.txt template.

	There is a new list attribute ‘subscribe_auto_approval’ which is a list of
email addresses and regular expressions matching email addresses whose
subscriptions are exempt from admin approval. RFE 403066.

Command line scripts

	Most scripts have grown a -C/–config flag to allow you to specify a
different configuration file. Without this, the default etc/mailman.cfg
file will be used.

	the -V/–virtual-host-overview switch in list_lists has been removed, while
-d/–domain and -f/–full have been added.

	bin/newlist is renamed bin/create_list and bin/rmlist is renamed
bin/remove_list. Both take fully-qualified list names now (i.e. the list’s
posting address), but also accept short names, in which case the default
domain is used. newlist’s -u/–urlhost and -e/–emailhost switches have
been removed. The domain that the list is being added to must already
exist.

	Backport the ability to specify additional footer interpolation variables
by the message metadata ‘decoration-data’ key.

Bug fixes and other patches

	Removal of DomainKey/DKIM signatures is now controlled by Defaults.py
mm_cfg.py variable REMOVE_DKIM_HEADERS (default = No).

	Queue runner processing is improved to log and preserve for analysis in the
shunt queue certain bad queue entries that were previously logged but lost.
Also, entries are preserved when an attempt to shunt throws an exception
(1656289).

	The processing of Topics regular expressions has changed. Previously the
Topics regexp was compiled in verbose mode but not documented as such which
caused some confusion. Also, the documentation indicated that topic
keywords could be entered one per line, but these entries were not handled
properly. Topics regexps are now compiled in non-verbose mode and multi-
line entries are ‘ored’. Existing Topics regexps will be converted when
the list is updated so they will continue to work.

	The List-Help, List-Subscribe, and List-Unsubscribe headers were
incorrectly suppressed in messages that Mailman sends directly to users.

	The ‘adminapproved’ metadata key is renamed ‘moderator_approved’.

Release notes

Mailman 3 is a fully rewritten code base. The developers believe it has
sufficient functionality to provide full mailing list services. It should be
ready for production use by experienced system developers, but it may not be
easy to install or run by novices.

We expect it to be possible to migrate Mailman 2.1 mailing lists to Mailman 3,
but sufficient caution, backups, and testing should be performed.

We expect it to be possible to run Mailman 3 and Mailman 2.1 together on the
same systems, but you may need to be quite experienced with configuring your
mail server and web infrastructure.

Mailman 3 may have bugs.

Mailman 3 is not yet feature complete with Mailman 2.1.

The documentation here describes the Mailman Core in great detail.
Postorius, Hyperkitty, mailman.client, and the bundler are described and
developed elsewhere.

More release notes are maintained on the Mailman wiki [http://wiki.list.org/Mailman3].

Getting started with GNU Mailman

Copyright (C) 2008-2016 by the Free Software Foundation, Inc.

Contact Us

Contributions of code, problem reports, and feature requests are welcome.
Please submit bug reports on the Mailman bug tracker at
https://gitlab.com/mailman/mailman/issues (you need to have a login on Gitlab to
do so). You can also send email to the mailman-developers@python.org mailing
list, or ask on IRC channel #mailman on Freenode.

Requirements

For the Core, Python 3.4 or newer is required. It can either be the default
‘python3’ on your $PATH or it can be accessible via the python3.4
binary. If your operating system does not include Python, see
http://www.python.org for information about downloading installers (where
available) and installing it from source (when necessary or preferred).
Python 2 is not supported.

You may need some additional dependencies, which are either available from
your OS vendor, or can be downloaded automatically from the Python
Cheeseshop [http://pypi.python.org/pypi].

Documentation

The documentation for Mailman 3 is distributed throughout the sources. The
core documentation (such as this file) is found in the src/mailman/docs
directory, but much of the documentation is in module-specific places. A
prebuilt HTML version of Mailman 3 documentation [http://www.pythonhosted.org/mailman/] is available at
pythonhosted.org, as is Postorius documentation [http://www.pythonhosted.org/postorius/]. HyperKitty
documentation [https://hyperkitty.readthedocs.org/en/latest/development.html] is available at ReadTheDocs.

The Development Setup Guide [https://fedorahosted.org/hyperkitty/wiki/DevelopmentSetupGuide] is a recent step-by-step explanation of
how to set up a complete Mailman 3 system including the Mailman 3 core
and basic client API, Postorius, and HyperKitty.

Testing Mailman 3

To run the Mailman test suite, just use the tox [https://testrun.org/tox/latest/] command:

$ tox

tox creates a virtual environment (virtualenv) for you, installs all the
dependencies into that virtualenv, and runs the test suite from that
virtualenv. By default it does not use the –system-site-packages so it
downloads everything from the Cheeseshop.

You do have access to the virtualenv, and you can use this to run individual
tests, e.g.:

$.tox/py34/bin/python -m nose2 -vv -P user

Use .tox/py34/bin/python -m nose2 –help for more options.

If you want to run the full test suite against the PostgreSQL database, set
the database up as described in Setting up your database, then create a postgres.cfg
file any where you want. This postgres.cfg file will contain the
[database] section for PostgreSQL, e.g.:

[database]
class: mailman.database.postgresql.PostgreSQLDatabase
url: postgres://myuser:mypassword@mypghost/mailman

Then run the test suite like so:

$ MAILMAN_EXTRA_TESTING_CFG=/path/to/postgres.cfg tox -e pg

If you want to run an individual test against PostgreSQL, you would do it like
so:

$ MAILMAN_EXTRA_TESTING_CFG=/path/to/postgres.cfg .tox/pg/bin/python -m nose2 -vv -P user

Building for development

To build Mailman for development purposes, you can create a virtual
environment outside of tox. You need to have the virtualenv [http://www.virtualenv.org/en/latest/] program
installed, or you can use Python 3’s built-in pyvenv [https://docs.python.org/3/library/venv.html] command.

First, create a virtual environment (venv). The directory you install the
venv into is up to you, but for purposes of this document, we’ll install it
into /tmp/mm3:

% pyvenv /tmp/mm3

Now, activate the virtual environment and set it up for development:

% source /tmp/mm3/bin/activate
% python setup.py develop

Sit back and have some Kombucha while you wait for everything to download and
install.

Build the online docs by running:

% python setup.py build_sphinx

If setup.py fails to recognize the build_sphinx command, then
just install Sphinx in your virtualenv:

% pip install sphinx

This will automatically add the build_sphinx command to
setup.py, so just re-run the command.

Then visit:

build/sphinx/html/index.html

in your browser to start reading the documentation. Or you can just read the
doctests by looking in all the ‘doc’ directories under the ‘mailman’ package.
Doctests are documentation first, so they should give you a pretty good idea
how various components of Mailman 3 work.

Once everything is downloaded and installed, you can initialize Mailman and
get a display of the basic configuration settings by running:

$ mailman info -v

Running Mailman 3

What, you actually want to run Mailman 3? Oh well, if you insist. You will
need to set up a configuration file to override the defaults and set things up
for your environment. Mailman is configured using an “ini”-style
configuration system.

src/mailman/config/schema.cfg defines the ini-file schema and contains
documentation for every section and configuration variable. Sections that end
in .template or .master are templates that must be overridden in actual
configuration files. There is a default configuration file that defines these
basic overrides in src/mailman/config/mailman.cfg. Your own configuration
file will override those.

By default, all runtime files are put under a var directory in the current
working directory.

Mailman searches for its configuration file using the following search path.
The first existing file found wins.

	-C config command line option

	$MAILMAN_CONFIG_FILE environment variable

	./mailman.cfg

	~/.mailman.cfg

	/etc/mailman.cfg

	argv[0]/../../etc/mailman.cfg

Run the mailman info command to see which configuration file Mailman will
use, and where it will put its database file. The first time you run this,
Mailman will also create any necessary run-time directories and log files.

Try mailman --help for more details. You can use the commands
mailman start to start the runner subprocess daemons, and of course
mailman stop to stop them.

Postorius, a web UI for administration and subscriber settings, is being
developed as a separate, Django-based project. For now, the most flexible
means of configuration is via the command line and REST API.

Mailman Web UI

The Mailman 3 web UI, called Postorius, interfaces to core Mailman engine
via the REST client API. It is expected that this architecture will make it
possible for users with other needs to adapt the web UI, or even replace it
entirely, with a reasonable amount of effort. However, as a core feature of
Mailman, the web UI will emphasize usability over modularity at first, so most
users should use the web UI described here.

The Archiver

In Mailman 3, the archivers are decoupled from the core engine. Instead,
Mailman 3 provides a simple, standard interface for third-party archiving tools
and services. For this reason, Mailman 3 defines a formal interface to insert
messages into any of a number of configured archivers, using whatever protocol
is appropriate for that archiver. Summary, search, and retrieval of archived
posts are handled by a separate application.

A new archive UI called Hyperkitty [https://gitlab.com/mailman/hyperkitty], based on the notmuch mail indexer [http://notmuchmail.org]
and Django [http://djangoproject.org/], was prototyped at the PyCon 2012 sprint by Toshio Kuratomi.
The Hyperkitty archiver is very loosely coupled to Mailman 3 core. In fact,
any email application that speaks LMTP or SMTP will be able to use Hyperkitty.

GNU Mailman Coding Style Guide

Copyright (C) 2002-2016 Barry A. Warsaw

Python coding style guide for GNU Mailman

NOTE: The canonical version of this style guide can be found at:

http://barry.warsaw.us/software/STYLEGUIDE.txt

This document contains a style guide for Python programming, as used in GNU
Mailman. PEP 8 [http://www.python.org/peps/pep-0008.html] is the basis for this style guide so it’s recommendations
should be followed except for the differences outlined here. This document
assumes the use of Python 3.

	After file comments (e.g. license block), add an __all__ section that
names, one-per-line, all the public names exported by this module. See the
GNU Mailman Python template [https://gitlab.com/mailman/mailman/blob/master/template.py] as an example.

	Imports are always put at the top of the file, just after any module
comments and docstrings, and before module globals and constants, but after
any __all__ definitions.

Imports should be grouped, with the order being:

	non-from imports, grouped from shorted module name to longest module
name, with ties being broken by alphabetical order.

	from-imports grouped alphabetically.

	In general, there should be one class per module. This is not a
hard-and-fast rule. Keep files small, but it’s okay to group related code
together. List everything exported from the module in the __all__.

	Right hanging comments are discouraged, in favor of preceding comments.
E.g. bad:

foo = blarzigop(bar) # if you don't blarzigop it, it'll shlorp

Good:

If you don't blarzigop it, it'll shlorp.
foo = blarzigop(bar)

Comments should always be complete sentences, with proper capitalization and
full stops at the end.

	Major sections of code in a module should be separated by form feed
characters (e.g. ^L – that’s a single character control-L not two
characters). This helps with Emacs navigation.

Put a ^L before module-level functions, before class definitions, before
big blocks of constants which follow imports, and any place else that would
be convenient to jump to. Always put two blank lines before a ^L.

	Put two blank lines between any top level construct or block of code
(e.g. after import blocks). Put only one blank line between methods in a
class. No blank lines between the class definition and the first method in
the class. No blank lines between a class/method and its docstrings.

	Try to minimize the vertical whitespace in a class or function. If you’re
inclined to separate stanzas of code for readability, consider putting a
comment in describing what the next stanza’s purpose is. Don’t put stupid
or obvious comments in just to avoid vertical whitespace though.

	Unless internal quote characters would mess things up, the general rule is
that single quotes should be used for short strings, double quotes for
triple-quoted multi-line strings and docstrings. E.g.:

foo = 'a foo thing'
warn = "Don't mess things up"
notice = """Our three chief weapons are:
 - surprise
 - deception
 - an almost fanatical devotion to the pope
 """

	Write docstrings for modules, functions, classes, and methods. Docstrings
can be omitted for special methods (e.g. __init__() or __str__()) where the
meaning is obvious.

	PEP 257 describes good docstrings conventions. Note that most importantly,
the “”” that ends a multiline docstring should be on a line by itself, e.g.:

"""Return a foobang

Optional plotz says to frobnicate the bizbaz first.
"""

	For one liner docstrings, keep the closing “”” on the same line.

	fill-column for docstrings should be 78.

	When testing the emptiness of sequences, use if len(seq) == 0 instead of
relying on the falseness of empty sequences. However, if a variable can be
one of several false values, it’s okay to just use if seq, though a
preceding comment is usually in order.

	Always decide whether a class’s methods and instance variables should be
public or non-public.

Single leading underscores are generally preferred for non-public
attributes. Use double leading underscores only in classes designed for
inheritance to ensure that truly private attributes will never name clash.
These should be rare.

Public attributes should have no leading or trailing underscores unless they
conflict with reserved words, in which case, a single trailing underscore is
preferable to a leading one, or a corrupted spelling, e.g. class_ rather
than klass.

Set up Postorius in five minutes

This is a quick guide for setting up a development environment to work on
Mailman 3’s web UI, called Postorius. If all goes as planned, you should be
done within 5 minutes. This has been tested on Ubuntu 11.04.

In order to download the components necessary you need to have the Git [http://git-scm.com]
version control system installed on your system. Mailman requires Python 3.4,
while mailman.client needs at least Python version 2.6.

It’s probably a good idea to set up a virtual Python environment using
virtualenv [http://pypi.python.org/pypi/virtualenv]. Here is a brief HOWTO. You would need two separate virtual
environment one using Python version 2.6 or 2.7 (for Postorius and
mailman.client) and other using Python version 3.4 (for Mailman core).

GNU Mailman 3

First download the latest revision of Mailman 3 from Gitlab.

$(py3) git clone git@gitlab.com:mailman/mailman.git

Install the Core:

$(py3) cd mailman
$(py3) python setup.py develop

If you get no errors you can now start Mailman:

$(py3) mailman start
$(py3) cd ..

At this point Mailman will not send nor receive any real emails. But that’s
fine as long as you only want to work on the components related to the REST
client or the web ui.

mailman.client (the Python bindings for Mailman’s REST API)

Now you should switch to the virtual environment running Python version 2.6 or
2.7. Download the client from Gitlab:

$(py2) git clone git@gitlab.com:mailman/mailmanclient.git

Install in development mode to be able to change the code without working
directly on the PYTHONPATH.

$(py2) cd mailman.client
$(py2) python setup.py develop
$(py2) cd ..

Postorius

$(py2) git clone git@gitlab.com:mailman/postorius.git
$(py2) cd postorius
$(py2) python setup.py develop

Start the development server

Postorius is a Django app which can be used with any Django project. We have
a project already developed which you can set up like this:

$(py2) git clone git@github.com:mailman/postorius_standalone.git
$(py2) cd postorius_standalone
$(py2) python manage.py syncdb
$(py2) python manage.py runserver

The last command will start the dev server on http://localhost:8000.

A note for MacOS X users (and possibly others running python 2.7)

Note: These paragraphs are struck-through on the Mailman wiki.

On an OS X 10.7 (Lion) system, some of these steps needed to be modified to
use python2.6 instead of python. (In particular, bzr is known to behave badly
when used python2.7 on OS X 10.7 at the moment – hopefully this will be fixed
and no longer an issue soon.)

You will need to install the latest version of XCode on MacOS 10.7, which is
available for free from the App Store. If you had a previous version of XCode
installed when you upgraded to 10.7, it will no longer work and will not have
automatically been upgraded, so be prepared to install again. Once you have
it installed from the App Store, you will still need to go run the installer
from /Applications to complete the installation.

Acknowledgment headers

Messages that flow through the global pipeline get their headers cooked,
which basically means that their headers go through several mostly unrelated
transformations. Some headers get added, others get changed. Some of these
changes depend on mailing list settings and others depend on how the message
is getting sent through the system. We’ll take things one-by-one.

>>> mlist = create_list('_xtest@example.com')
>>> mlist.subject_prefix = ''

When the message’s metadata has a noack key set, an X-Ack: no header is
added.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)

>>> from mailman.handlers.cook_headers import process
>>> process(mlist, msg, dict(noack=True))
>>> print(msg.as_string())
From: aperson@example.com
X-Ack: no
...

Any existing X-Ack header in the original message is removed.

>>> msg = message_from_string("""\
... X-Ack: yes
... From: aperson@example.com
...
... A message of great import.
... """)
>>> process(mlist, msg, dict(noack=True))
>>> print(msg.as_string())
From: aperson@example.com
X-Ack: no
...

Message acknowledgment

When a user posts a message to a mailing list, and that user has chosen to
receive acknowledgments of their postings, Mailman will sent them such an
acknowledgment.

>>> mlist = create_list('test@example.com')
>>> mlist.display_name = 'Test'
>>> mlist.preferred_language = 'en'
>>> mlist.send_welcome_message = False
>>> # XXX This will almost certainly change once we've worked out the web
>>> # space layout for mailing lists now.

>>> # Ensure that the virgin queue is empty, since we'll be checking this
>>> # for new auto-response messages.
>>> from mailman.testing.helpers import get_queue_messages
>>> get_queue_messages('virgin')
[]

Subscribe a user to the mailing list.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> from mailman.interfaces.member import MemberRole
>>> user_1 = user_manager.create_user('aperson@example.com')
>>> address_1 = list(user_1.addresses)[0]
>>> mlist.subscribe(address_1, MemberRole.member)
<Member: aperson@example.com on test@example.com as MemberRole.member>

Non-member posts

Non-members can’t get acknowledgments of their posts to the mailing list.

>>> msg = message_from_string("""\
... From: bperson@example.com
...
... """)

>>> handler = config.handlers['acknowledge']
>>> handler.process(mlist, msg, {})
>>> get_queue_messages('virgin')
[]

We can also specify the original sender in the message’s metadata. If that
person is also not a member, no acknowledgment will be sent either.

>>> msg = message_from_string("""\
... From: bperson@example.com
...
... """)
>>> handler.process(mlist, msg,
... dict(original_sender='cperson@example.com'))
>>> get_queue_messages('virgin')
[]

No acknowledgment requested

Unless the user has requested acknowledgments, they will not get one.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> handler.process(mlist, msg, {})
>>> get_queue_messages('virgin')
[]

Similarly if the original sender is specified in the message metadata, and
that sender is a member but not one who has requested acknowledgments, none
will be sent.

>>> user_2 = user_manager.create_user('dperson@example.com')
>>> address_2 = list(user_2.addresses)[0]
>>> mlist.subscribe(address_2, MemberRole.member)
<Member: dperson@example.com on test@example.com as MemberRole.member>

>>> handler.process(mlist, msg,
... dict(original_sender='dperson@example.com'))
>>> get_queue_messages('virgin')
[]

Requested acknowledgments

If the member requests acknowledgments, Mailman will send them one when they
post to the mailing list.

>>> user_1.preferences.acknowledge_posts = True

The receipt will include the original message’s subject in the response body,

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: Something witty and insightful
...
... """)
>>> handler.process(mlist, msg, {})
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : test.example.com
nodecorate : True
recipients : {'aperson@example.com'}
reduced_list_headers: True
...
>>> print(messages[0].msg.as_string())
...
MIME-Version: 1.0
...
Subject: Test post acknowledgment
From: test-bounces@example.com
To: aperson@example.com
...
Precedence: bulk
<BLANKLINE>
Your message entitled
<BLANKLINE>
 Something witty and insightful
<BLANKLINE>
was successfully received by the Test mailing list.
<BLANKLINE>
List info page: http://lists.example.com/listinfo/test@example.com
Your preferences: http://example.com/aperson@example.com
<BLANKLINE>

If there is no subject, then the receipt will use a generic message.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> handler.process(mlist, msg, {})
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : test.example.com
nodecorate : True
recipients : {'aperson@example.com'}
reduced_list_headers: True
...
>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
...
Subject: Test post acknowledgment
From: test-bounces@example.com
To: aperson@example.com
...
Precedence: bulk
<BLANKLINE>
Your message entitled
<BLANKLINE>
 (no subject)
<BLANKLINE>
was successfully received by the Test mailing list.
<BLANKLINE>
List info page: http://lists.example.com/listinfo/test@example.com
Your preferences: http://example.com/aperson@example.com
<BLANKLINE>

After delivery

After a message is delivered, or more correctly, after it has been processed
by the rest of the handlers in the incoming queue pipeline, a couple of
bookkeeping pieces of information are updated.

>>> from datetime import timedelta
>>> from mailman.utilities.datetime import now
>>> mlist = create_list('_xtest@example.com')
>>> post_time = now() - timedelta(minutes=10)
>>> mlist.last_post_time = post_time
>>> mlist.post_id = 10

Processing a message with this handler updates the last_post_time and post_id
attributes.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... Something interesting.
... """)

>>> handler = config.handlers['after-delivery']
>>> handler.process(mlist, msg, {})
>>> mlist.last_post_time > post_time
True
>>> mlist.post_id
11

Archives

Updating the archives with posted messages is handled by a separate queue,
which allows for better memory management and prevents blocking the main
delivery processes while messages are archived. This also allows external
archivers to work in a separate process from the main Mailman delivery
processes.

>>> handler = config.handlers['to-archive']
>>> mlist = create_list('_xtest@example.com')
>>> switchboard = config.switchboards['archive']

A helper function.

>>> def clear():
... for filebase in switchboard.files:
... msg, msgdata = switchboard.dequeue(filebase)
... switchboard.finish(filebase)

The purpose of this handler is to make a simple decision as to whether the
message should get archived and if so, to drop the message in the archiving
queue. Really the most important things are to determine when a message
should not get archived.

For example, no digests should ever get archived.

>>> from mailman.interfaces.archiver import ArchivePolicy
>>> mlist.archive_policy = ArchivePolicy.public
>>> msg = message_from_string("""\
... Subject: A sample message
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, dict(isdigest=True))
>>> switchboard.files
[]

If the mailing list is not configured to archive, then even regular deliveries
won’t be archived.

>>> mlist.archive_policy = ArchivePolicy.never
>>> handler.process(mlist, msg, {})
>>> switchboard.files
[]

There are two de-facto standards for a message to indicate that it does not
want to be archived. We’ve seen both in the wild so both are supported. The
X-No-Archive: header can be used to indicate that the message should not
be archived. Confusingly, this header’s value is actually ignored.

>>> mlist.archive_policy = ArchivePolicy.public
>>> msg = message_from_string("""\
... Subject: A sample message
... X-No-Archive: YES
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, dict(isdigest=True))
>>> switchboard.files
[]

Even a no value will stop the archiving of the message.

>>> msg = message_from_string("""\
... Subject: A sample message
... X-No-Archive: No
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, dict(isdigest=True))
>>> switchboard.files
[]

Another header that’s been observed is the X-Archive: header. Here, the
header’s case folded value must be no in order to prevent archiving.

>>> msg = message_from_string("""\
... Subject: A sample message
... X-Archive: No
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, dict(isdigest=True))
>>> switchboard.files
[]

But if the value is yes, then the message will be archived.

>>> msg = message_from_string("""\
... Subject: A sample message
... X-Archive: Yes
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, {})
>>> len(switchboard.files)
1
>>> filebase = switchboard.files[0]
>>> qmsg, qdata = switchboard.dequeue(filebase)
>>> switchboard.finish(filebase)
>>> print(qmsg.as_string())
Subject: A sample message
X-Archive: Yes
<BLANKLINE>
A message of great import.
<BLANKLINE>
>>> dump_msgdata(qdata)
_parsemsg: False
version : 3

Without either archiving header, and all other things being the same, the
message will get archived.

>>> msg = message_from_string("""\
... Subject: A sample message
...
... A message of great import.
... """)
>>> handler.process(mlist, msg, {})
>>> len(switchboard.files)
1
>>> filebase = switchboard.files[0]
>>> qmsg, qdata = switchboard.dequeue(filebase)
>>> switchboard.finish(filebase)
>>> print(qmsg.as_string())
Subject: A sample message
<BLANKLINE>
A message of great import.
<BLANKLINE>
>>> dump_msgdata(qdata)
_parsemsg: False
version : 3

Avoid duplicates

This handler implements several strategies to reduce the reception of
duplicate messages. It does this by removing certain recipients from the list
of recipients calculated earlier.

>>> mlist = create_list('_xtest@example.com')

Create some members we’re going to use.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> address_a = user_manager.create_address('aperson@example.com')
>>> address_b = user_manager.create_address('bperson@example.com')

>>> from mailman.interfaces.member import MemberRole
>>> member_a = mlist.subscribe(address_a, MemberRole.member)
>>> member_b = mlist.subscribe(address_b, MemberRole.member)
>>> # This is the message metadata dictionary as it would be produced by
>>> # the CalcRecips handler.
>>> recips = dict(
... recipients=['aperson@example.com', 'bperson@example.com'])

Short circuiting

The module short-circuits if there are no recipients.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: A message of great import
...
... Something
... """)
>>> msgdata = {}

>>> handler = config.handlers['avoid-duplicates']
>>> handler.process(mlist, msg, msgdata)
>>> msgdata
{}
>>> print(msg.as_string())
From: aperson@example.com
Subject: A message of great import

Something

Suppressing the list copy

Members can elect not to receive a list copy of any message on which they are
explicitly named as a recipient. This is done by setting their
receive_list_copy preference to False. However, if they aren’t
mentioned in one of the recipient headers (i.e. To, CC, Resent-To,
or Resent-CC), then they will get a list copy.

>>> member_a.preferences.receive_list_copy = False
>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['aperson@example.com', 'bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
<BLANKLINE>
Something of great import.
<BLANKLINE>

If they’re mentioned on the CC line, they won’t get a list copy.

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... CC: aperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
CC: aperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

But if they’re mentioned on the CC line and have receive_list_copy set
to True (the default), then they still get a list copy.

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... CC: bperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['aperson@example.com', 'bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
CC: bperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

Other headers checked for recipients include the To…

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... To: aperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
To: aperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

… Resent-To …

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... Resent-To: aperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
Resent-To: aperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

…and Resent-CC headers.

>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
... Resent-Cc: aperson@example.com
...
... Something of great import.
... """)
>>> msgdata = recips.copy()
>>> handler.process(mlist, msg, msgdata)
>>> sorted(msgdata['recipients'])
['bperson@example.com']
>>> print(msg.as_string())
From: Claire Person <cperson@example.com>
Resent-Cc: aperson@example.com
<BLANKLINE>
Something of great import.
<BLANKLINE>

Cleansing headers

All messages posted to a list get their headers cleansed. Some headers are
related to additional permissions that can be granted to the message and other
headers can be used to fish for membership.

>>> mlist = create_list('_xtest@example.com')

Headers such as Approved, Approve, (as well as their X- variants)
and Urgent are used to grant special permissions to individual messages.
All may contain a password; the first two headers are used by list
administrators to pre-approve a message normal held for approval. The latter
header is used to send a regular message to all members, regardless of whether
they get digests or not. Because all three headers contain passwords, they
must be removed from any posted message.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Approved: foobar
... Approve: barfoo
... X-Approved: bazbar
... X-Approve: barbaz
... Urgent: notreally
... Subject: A message of great import
...
... Blah blah blah
... """)

>>> handler = config.handlers['cleanse']
>>> handler.process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
Subject: A message of great import

Blah blah blah

Other headers can be used by list members to fish the list for membership, so
we don’t let them go through. These are a mix of standard headers and custom
headers supported by some mail readers. For example, X-PMRC is supported
by Pegasus mail. I don’t remember what program uses X-Confirm-Reading-To
though (Some Microsoft product perhaps?).

>>> msg = message_from_string("""\
... From: bperson@example.com
... Reply-To: bperson@example.org
... Sender: asystem@example.net
... Return-Receipt-To: another@example.com
... Disposition-Notification-To: athird@example.com
... X-Confirm-Reading-To: afourth@example.com
... X-PMRQC: afifth@example.com
... Subject: a message to you
...
... How are you doing?
... """)
>>> handler.process(mlist, msg, {})
>>> print(msg.as_string())
From: bperson@example.com
Reply-To: bperson@example.org
Sender: asystem@example.net
Subject: a message to you
<BLANKLINE>
How are you doing?
<BLANKLINE>

Anonymous lists

Anonymous mailing lists also try to cleanse certain identifying headers from
the original posting, so that it is at least a bit more difficult to determine
who sent the message. This isn’t perfect though, for example, the body of the
messages are never scrubbed (though that might not be a bad idea). The
From and Reply-To headers in the posted message are taken from list
attributes.

Hotmail apparently sets X-Originating-Email.

>>> mlist.anonymous_list = True
>>> mlist.description = 'A Test Mailing List'
>>> mlist.preferred_language = 'en'
>>> msg = message_from_string("""\
... From: bperson@example.com
... Reply-To: bperson@example.org
... Sender: asystem@example.net
... X-Originating-Email: cperson@example.com
... Subject: a message to you
...
... How are you doing?
... """)
>>> handler.process(mlist, msg, {})
>>> print(msg.as_string())
Subject: a message to you
From: A Test Mailing List <_xtest@example.com>
Reply-To: _xtest@example.com
<BLANKLINE>
How are you doing?
<BLANKLINE>

Cooking headers

Messages that flow through the global pipeline get their headers ‘cooked’,
which basically means that their headers go through several mostly unrelated
transformations. Some headers get added, others get changed. Some of these
changes depend on mailing list settings and others depend on how the message
is getting sent through the system. We’ll take things one-by-one.

>>> mlist = create_list('test@example.com')
>>> mlist.subject_prefix = ''

Saving the original sender

Because the original sender headers may get deleted or changed, this handler
will place the sender in the message metadata for safe keeping.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)
>>> msgdata = {}

>>> from mailman.handlers.cook_headers import process
>>> process(mlist, msg, msgdata)
>>> print(msgdata['original_sender'])
aperson@example.com

But if there was no original sender, then the empty string will be saved.

>>> msg = message_from_string("""\
... Subject: No original sender
...
... A message of great import.
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msgdata['original_sender'])
<BLANKLINE>

Mailman version header

Mailman will also insert an X-Mailman-Version header…

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> from mailman.version import VERSION
>>> msg['x-mailman-version'] == VERSION
True

…but only if one doesn’t already exist.

>>> msg = message_from_string("""\
... From: aperson@example.com
... X-Mailman-Version: 3000
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['x-mailman-version'])
3000

Precedence header

Mailman will insert a Precedence header, which is a de-facto standard for
telling automatic reply software (e.g. vacation(1)) not to respond to this
message.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['precedence'])
list

But Mailman will only add that header if the original message doesn’t already
have one of them.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Precedence: junk
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['precedence'])
junk

Personalization

The To field normally contains the list posting address. However when
messages are fully personalized, that header will get overwritten with the
address of the recipient. The list’s posting address will be added to one of
the recipient headers so that users will be able to reply back to the list.

>>> from mailman.interfaces.mailinglist import (
... Personalization, ReplyToMunging)
>>> mlist.personalize = Personalization.full
>>> mlist.reply_goes_to_list = ReplyToMunging.no_munging
>>> mlist.description = 'My test mailing list'
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
X-Mailman-Version: ...
Precedence: list
Cc: My test mailing list <test@example.com>
<BLANKLINE>
<BLANKLINE>

Message decoration

Message decoration is the process of adding headers and footers to the
original message. A handler module takes care of this based on the settings
of the mailing list and the type of message being processed.

>>> mlist = create_list('_xtest@example.com')
>>> msg_text = """\
... From: aperson@example.org
...
... Here is a message.
... """
>>> msg = message_from_string(msg_text)

Short circuiting

Digest messages get decorated during the digest creation phase so no extra
decorations are added for digest messages.

>>> from mailman.handlers.decorate import process
>>> process(mlist, msg, dict(isdigest=True))
>>> print(msg.as_string())
From: aperson@example.org

Here is a message.

>>> process(mlist, msg, dict(nodecorate=True))
>>> print(msg.as_string())
From: aperson@example.org

Here is a message.

Simple decorations

Message decorations are specified by URI and can be specialized by the mailing
list and language. Internal Mailman decorations can be referenced by using
the mailman:// URL scheme. Here we create a simple English header and
footer for all mailing lists in our site.

>>> import os, tempfile
>>> template_dir = tempfile.mkdtemp()
>>> site_dir = os.path.join(template_dir, 'site', 'en')
>>> os.makedirs(site_dir)
>>> config.push('templates', """
... [paths.testing]
... template_dir: {0}
... """.format(template_dir))

>>> myheader_path = os.path.join(site_dir, 'myheader.txt')
>>> with open(myheader_path, 'w') as fp:
... print('header', file=fp)
>>> myfooter_path = os.path.join(site_dir, 'myfooter.txt')
>>> with open(myfooter_path, 'w') as fp:
... print('footer', file=fp)

Setting these attributes on the mailing list causes it to use these
templates. Since these are site-global templates, we can use a shorter path.

>>> mlist.header_uri = 'mailman:///myheader.txt'
>>> mlist.footer_uri = 'mailman:///myfooter.txt'

Text messages that have no declared content type are, by default encoded in
ASCII. When the mailing list’s preferred language is en (i.e. English),
the character set of the mailing list and of the message will match, allowing
Mailman to simply prepend the header and append the footer verbatim.

>>> mlist.preferred_language = 'en'
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.org
...
<BLANKLINE>
header
Here is a message.
footer

Mailman supports a number of interpolation variables, placeholders in the
header and footer for information to be filled in with mailing list specific
data. An example of such information is the mailing list’s real name (a
short descriptive name for the mailing list).

>>> with open(myheader_path, 'w') as fp:
... print('$display_name header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('$display_name footer', file=fp)

>>> msg = message_from_string(msg_text)
>>> mlist.display_name = 'XTest'
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.org
...
XTest header
Here is a message.
XTest footer

You can’t just pick any interpolation variable though; if you do, the variable
will remain in the header or footer unchanged.

>>> with open(myheader_path, 'w') as fp:
... print('$dummy header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('$dummy footer', file=fp)

>>> msg = message_from_string(msg_text)
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.org
...
$dummy header
Here is a message.
$dummy footer

Handling RFC 3676 ‘format=flowed’ parameters

RFC 3676 describes a standard by which text/plain messages can marked by
generating MUAs for better readability in compatible receiving MUAs. The
format parameter on the text/plain Content-Type header gives hints as
to how the receiving MUA may flow and delete trailing whitespace for better
display in a proportional font.

When Mailman sees text/plain messages with such RFC 3676 parameters, it
preserves these parameters when it concatenates headers and footers to the
message payload.

>>> with open(myheader_path, 'w') as fp:
... print('header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('footer', file=fp)

>>> mlist.preferred_language = 'en'
>>> msg = message_from_string("""\
... From: aperson@example.org
... Content-Type: text/plain; format=flowed; delsp=no
...
... Here is a message\x20
... with soft line breaks.
... """)
>>> process(mlist, msg, {})
>>> # Don't use 'print' here as above because it won't be obvious from the
>>> # output that the soft-line break space at the end of the 'Here is a
>>> # message' line will be retained in the output.
>>> print(msg['content-type'])
text/plain; format="flowed"; delsp="no"; charset="us-ascii"
>>> for line in msg.get_payload().splitlines():
... print('>{0}<'.format(line))
>header<
>Here is a message <
>with soft line breaks.<
>footer<

Decorating mixed-charset messages

When a message has no explicit character set, it is assumed to be ASCII.
However, if the mailing list’s preferred language has a different character
set, Mailman will still try to concatenate the header and footer, but it will
convert the text to utf-8 and base-64 encode the message payload.

'ja' = Japanese; charset = 'euc-jp'
>>> mlist.preferred_language = 'ja'

>>> with open(myheader_path, 'w') as fp:
... print('$description header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('$description footer', file=fp)
>>> mlist.description = '\u65e5\u672c\u8a9e'

>>> from email.message import Message
>>> msg = Message()
>>> msg.set_payload('Fran\xe7aise', 'iso-8859-1')
>>> print(msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
<BLANKLINE>
Fran=E7aise
>>> process(mlist, msg, {})
>>> print(msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: base64
<BLANKLINE>
5pel5pys6KqeIGhlYWRlcgpGcmFuw6dhaXNlCuaXpeacrOiqniBmb290ZXIK

Sometimes the message even has an unknown character set. In this case,
Mailman has no choice but to decorate the original message with MIME
attachments.

>>> mlist.preferred_language = 'en'
>>> with open(myheader_path, 'w') as fp:
... print('header', file=fp)
>>> with open(myfooter_path, 'w') as fp:
... print('footer', file=fp)

>>> msg = message_from_string("""\
... From: aperson@example.org
... Content-Type: text/plain; charset=unknown
... Content-Transfer-Encoding: 7bit
...
... Here is a message.
... """)

>>> process(mlist, msg, {})
>>> msg.set_boundary('BOUNDARY')
>>> print(msg.as_string())
From: aperson@example.org
Content-Type: multipart/mixed; boundary="BOUNDARY"

--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline

header
--BOUNDARY
Content-Type: text/plain; charset=unknown
Content-Transfer-Encoding: 7bit

Here is a message.

--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline

footer
--BOUNDARY--

Decorating multipart messages

Multipart messages have to be decorated differently. The header and footer
cannot be simply concatenated into the payload because that will break the
MIME structure of the message. Instead, the header and footer are attached as
separate MIME subparts.

When the outer part is multipart/mixed, the header and footer can have a
Content-Disposition of inline so that MUAs can display these headers
as if they were simply concatenated.

>>> part_1 = message_from_string("""\
... From: aperson@example.org
...
... Here is the first message.
... """)
>>> part_2 = message_from_string("""\
... From: bperson@example.com
...
... Here is the second message.
... """)
>>> from email.mime.multipart import MIMEMultipart
>>> msg = MIMEMultipart('mixed', boundary='BOUNDARY',
... _subparts=(part_1, part_2))
>>> process(mlist, msg, {})
>>> print(msg.as_string())
Content-Type: multipart/mixed; boundary="BOUNDARY"
MIME-Version: 1.0
<BLANKLINE>
--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
<BLANKLINE>
header
--BOUNDARY
From: aperson@example.org
<BLANKLINE>
Here is the first message.
<BLANKLINE>
--BOUNDARY
From: bperson@example.com
<BLANKLINE>
Here is the second message.
<BLANKLINE>
--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
<BLANKLINE>
footer
--BOUNDARY--

Decorating other content types

Non-multipart non-text content types will get wrapped in a multipart/mixed
so that the header and footer can be added as attachments.

>>> msg = message_from_string("""\
... From: aperson@example.org
... Content-Type: image/x-beautiful
...
... IMAGEDATAIMAGEDATAIMAGEDATA
... """)
>>> process(mlist, msg, {})
>>> msg.set_boundary('BOUNDARY')
>>> print(msg.as_string())
From: aperson@example.org
...
--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
<BLANKLINE>
header
--BOUNDARY
Content-Type: image/x-beautiful
<BLANKLINE>
IMAGEDATAIMAGEDATAIMAGEDATA
<BLANKLINE>
--BOUNDARY
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
<BLANKLINE>
footer
--BOUNDARY--

Digests

Digests are a way for a user to receive list traffic in collections instead of
as individual messages when immediately posted. There are several forms of
digests, although only two are currently supported: MIME digests and RFC 1153
(a.k.a. plain text) digests.

>>> mlist = create_list('xtest@example.com')

This is a helper function used to iterate through all the accumulated digest
messages, in the order in which they were posted. This makes it easier to
update the tests when we switch to a different mailbox format.

>>> from mailman.testing.helpers import digest_mbox
>>> from itertools import count
>>> from string import Template

>>> def message_factory():
... for i in count(1):
... text = Template("""\
... From: aperson@example.com
... To: xtest@example.com
... Subject: Test message $i
...
... Here is message $i
... """).substitute(i=i)
... yield message_from_string(text)
>>> message_factory = message_factory()

Short circuiting

When a message is posted to the mailing list, it is generally added to a
mailbox, unless the mailing list does not allow digests.

>>> mlist.digestable = False
>>> msg = next(message_factory)
>>> process = config.handlers['to-digest'].process
>>> process(mlist, msg, {})
>>> sum(1 for msg in digest_mbox(mlist))
0
>>> digest_queue = config.switchboards['digest']
>>> digest_queue.files
[]

…or they may allow digests but the message is already a digest.

>>> mlist.digestable = True
>>> process(mlist, msg, dict(isdigest=True))
>>> sum(1 for msg in digest_mbox(mlist))
0
>>> digest_queue.files
[]

Sending a digest

For messages which are not digests, but which are posted to a digesting
mailing list, the messages will be stored until they reach a criteria
triggering the sending of the digest. If none of those criteria are met, then
the message will just sit in the mailbox for a while.

>>> mlist.digest_size_threshold = 10000
>>> process(mlist, msg, {})
>>> digest_queue.files
[]
>>> digest = digest_mbox(mlist)
>>> sum(1 for msg in digest)
1
>>> import os
>>> os.remove(digest._path)

When the size of the digest mailbox reaches the maximum size threshold, a
marker message is placed into the digest runner’s queue. The digest is not
actually crafted by the handler.

>>> mlist.digest_size_threshold = 1
>>> mlist.volume = 2
>>> mlist.next_digest_number = 10
>>> digest_path = os.path.join(mlist.data_path, 'digest.mmdf')
>>> size = 0
>>> for msg in message_factory:
... process(mlist, msg, {})
... # When the digest reaches the proper size, it is renamed. So we
... # can break out of this list when the file disappears.
... if not os.path.exists(digest_path):
... break

>>> sum(1 for msg in digest_mbox(mlist))
0
>>> len(digest_queue.files)
1

The digest has been moved to a unique file.

>>> from mailman.utilities.mailbox import Mailbox
>>> from mailman.testing.helpers import get_queue_messages
>>> item = get_queue_messages('digest')[0]
>>> for msg in Mailbox(item.msgdata['digest_path']):
... print(msg['subject'])
Test message 2
Test message 3
Test message 4
Test message 5
Test message 6
Test message 7
Test message 8
Test message 9

Digests are actually crafted and sent by a separate digest runner.

File recipients

Mailman can calculate the recipients for a message from a Sendmail-style
include file. This file must be called members.txt and it must live in
the list’s data directory.

>>> mlist = create_list('_xtest@example.com')

Short circuiting

If the message’s metadata already has recipients, this handler immediately
returns.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message.
... """)
>>> msgdata = {'recipients': 7}

>>> handler = config.handlers['file-recipients']
>>> handler.process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com

A message.

>>> dump_msgdata(msgdata)
recipients: 7

Existing file

If the file exists, it contains a list of addresses, one per line. These
addresses are returned as the set of recipients.

>>> import os
>>> file_path = os.path.join(mlist.data_path, 'members.txt')
>>> with open(file_path, 'w', encoding='utf-8') as fp:
... print('bperson@example.com', file=fp)
... print('cperson@example.com', file=fp)
... print('dperson@example.com', file=fp)
... print('eperson@example.com', file=fp)
... print('fperson@example.com', file=fp)
... print('gperson@example.com', file=fp)

>>> msgdata = {}
>>> handler.process(mlist, msg, msgdata)
>>> dump_list(msgdata['recipients'])
bperson@example.com
cperson@example.com
dperson@example.com
eperson@example.com
fperson@example.com
gperson@example.com

However, if the sender of the original message is a member of the list and
their address is in the include file, the sender’s address is not included
in the recipients list.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> address_1 = getUtility(IUserManager).create_address(
... 'cperson@example.com')

>>> from mailman.interfaces.member import MemberRole
>>> mlist.subscribe(address_1, MemberRole.member)
<Member: cperson@example.com on _xtest@example.com as MemberRole.member>

>>> msg = message_from_string("""\
... From: cperson@example.com
...
... A message.
... """)
>>> msgdata = {}
>>> handler.process(mlist, msg, msgdata)
>>> dump_list(msgdata['recipients'])
bperson@example.com
dperson@example.com
eperson@example.com
fperson@example.com
gperson@example.com

Content filtering

Mailman can filter the content of messages posted to a mailing list by
stripping MIME subparts, and possibly reorganizing the MIME structure of a
message.

>>> mlist = create_list('test@example.com')

Several mailing list options control content filtering. First, the feature
must be enabled, then there are two options that control which MIME types get
filtered and which get passed. Finally, there is an option to control whether
text/html parts will get converted to plain text. Let’s set up some
defaults for these variables, then we’ll explain them in more detail below.

>>> mlist.filter_content = True
>>> mlist.filter_types = []
>>> mlist.pass_types = []
>>> mlist.convert_html_to_plaintext = False

Filtering the outer content type

A simple filtering setting will just search the content types of the messages
parts, discarding all parts with a matching MIME type. If the message’s outer
content type matches the filter, the entire message will be discarded.
However, if we turn off content filtering altogether, then the handler
short-circuits.

>>> from mailman.interfaces.mime import FilterAction

>>> mlist.filter_types = ['image/jpeg']
>>> mlist.filter_action = FilterAction.discard

>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: image/jpeg
... MIME-Version: 1.0
...
... xxxxx
... """)

>>> process = config.handlers['mime-delete'].process
>>> mlist.filter_content = False
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: image/jpeg
MIME-Version: 1.0

xxxxx
>>> msgdata
{}

Similarly, no content filtering is performed on digest messages, which are
crafted internally by Mailman.

>>> mlist.filter_content = True
>>> msgdata = {'isdigest': True}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: image/jpeg
MIME-Version: 1.0
<BLANKLINE>
xxxxx
>>> dump_msgdata(msgdata)
isdigest: True

Simple multipart filtering

If one of the subparts in a multipart message matches the filter type,
then just that subpart will be stripped.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: multipart/mixed; boundary=BOUNDARY
... MIME-Version: 1.0
...
... --BOUNDARY
... Content-Type: image/jpeg
... MIME-Version: 1.0
...
... xxx
...
... --BOUNDARY
... Content-Type: image/gif
... MIME-Version: 1.0
...
... yyy
... --BOUNDARY--
... """)

>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: multipart/mixed; boundary=BOUNDARY
MIME-Version: 1.0
X-Content-Filtered-By: Mailman/MimeDel ...

--BOUNDARY
Content-Type: image/gif
MIME-Version: 1.0

yyy
--BOUNDARY--

Collapsing multipart/alternative messages

When content filtering encounters a multipart/alternative part, and the
results of filtering leave only one of the subparts, then the
multipart/alternative may be collapsed. For example, in the following
message, the outer content type is a multipart/mixed. Inside this part is
just a single subpart that has a content type of multipart/alternative.
This inner multipart has two subparts, a jpeg and a gif.

Content filtering will remove the jpeg part, leaving the
multipart/alternative with only a single gif subpart. Because there’s
only one subpart left, the MIME structure of the message will be reorganized,
removing the inner multipart/alternative so that the outer
multipart/mixed has just a single gif subpart.

>>> mlist.collapse_alternatives = True
>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: multipart/mixed; boundary=BOUNDARY
... MIME-Version: 1.0
...
... --BOUNDARY
... Content-Type: multipart/alternative; boundary=BOUND2
... MIME-Version: 1.0
...
... --BOUND2
... Content-Type: image/jpeg
... MIME-Version: 1.0
...
... xxx
...
... --BOUND2
... Content-Type: image/gif
... MIME-Version: 1.0
...
... yyy
... --BOUND2--
...
... --BOUNDARY--
... """)
>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: multipart/mixed; boundary=BOUNDARY
MIME-Version: 1.0
X-Content-Filtered-By: Mailman/MimeDel ...
<BLANKLINE>
--BOUNDARY
Content-Type: image/gif
MIME-Version: 1.0
<BLANKLINE>
yyy
--BOUNDARY--
<BLANKLINE>

When the outer part is a multipart/alternative and filtering leaves this
outer part with just one subpart, the entire message is converted to the left
over part’s content type. In other words, the left over inner part is
promoted to being the outer part.

>>> mlist.filter_types = ['image/jpeg', 'text/html']
>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: multipart/alternative; boundary=AAA
...
... --AAA
... Content-Type: text/html
...
... This is some html
... --AAA
... Content-Type: text/plain
...
... This is plain text
... --AAA--
... """)

>>> process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
Content-Type: text/plain
X-Content-Filtered-By: Mailman/MimeDel ...

This is plain text

Clean up.

>>> mlist.filter_types = ['image/jpeg']

Conversion to plain text

Some mailing lists prohibit HTML email, and in fact, such email can be a
phishing or spam vector. However, many mail readers will send HTML email by
default because users think it looks pretty. One approach to handling this
would be to filter out text/html parts and rely on
multipart/alternative collapsing to leave just a plain text part. This
works because many mail readers that send HTML email actually send a plain
text part in the second subpart of such multipart/alternatives.

While this is a good suggestion for plain text-only mailing lists, often a
mail reader will send only a text/html part with no plain text
alternative. in this case, the site administer can enable text/html to
text/plain conversion by defining a conversion command. A list
administrator still needs to enable such conversion for their list though.

>>> mlist.convert_html_to_plaintext = True

By default, Mailman sends the message through lynx, but since this program is
not guaranteed to exist, we’ll craft a simple, but stupid script to simulate
the conversion process. The script expects a single argument, which is the
name of the file containing the message payload to filter.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: text/html
... MIME-Version: 1.0
...
... <html><head></head>
... <body></body></html>
... """)

>>> from mailman.handlers.tests.test_mimedel import dummy_script
>>> with dummy_script():
... process(mlist, msg, {})
>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: text/plain
X-Content-Filtered-By: Mailman/MimeDel ...

Converted text/html to text/plain
Filename: ...

Discarding empty parts

Similarly, if after filtering a multipart section ends up empty, then the
entire multipart is discarded. For example, here’s a message where an inner
multipart/mixed contains two jpeg subparts. Both jpegs are filtered out,
so the entire inner multipart/mixed is discarded.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Content-Type: multipart/mixed; boundary=AAA
...
... --AAA
... Content-Type: multipart/mixed; boundary=BBB
...
... --BBB
... Content-Type: image/jpeg
...
... xxx
... --BBB
... Content-Type: image/jpeg
...
... yyy
... --BBB---
... --AAA
... Content-Type: multipart/alternative; boundary=CCC
...
... --CCC
... Content-Type: text/html
...
... <h2>This is a header</h2>
...
... --CCC
... Content-Type: text/plain
...
... A different message
... --CCC--
... --AAA
... Content-Type: image/gif
...
... zzz
... --AAA
... Content-Type: image/gif
...
... aaa
... --AAA--
... """)

>>> with dummy_script():
... process(mlist, msg, {})

>>> print(msg.as_string())
From: aperson@example.com
Content-Type: multipart/mixed; boundary=AAA
X-Content-Filtered-By: Mailman/MimeDel ...

--AAA
MIME-Version: 1.0
Content-Type: text/plain

Converted text/html to text/plain
Filename: ...

--AAA
Content-Type: image/gif

zzz
--AAA
Content-Type: image/gif

aaa
--AAA--

Passing MIME types

XXX Describe the pass_mime_types setting and how it interacts with
filter_mime_types.

Calculating recipients

Every message that makes it through to the list membership gets sent to a set
of recipient addresses. These addresses are calculated by one of the handler
modules and depends on a host of factors.

>>> mlist = create_list('test@example.com')

Recipients are calculate from the list membership, so first some people
subscribe to the mailing list…

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> address_a = user_manager.create_address('aperson@example.com')
>>> address_b = user_manager.create_address('bperson@example.com')
>>> address_c = user_manager.create_address('cperson@example.com')
>>> address_d = user_manager.create_address('dperson@example.com')
>>> address_e = user_manager.create_address('eperson@example.com')
>>> address_f = user_manager.create_address('fperson@example.com')

…then subscribe these addresses to the mailing list as members…

>>> from mailman.interfaces.member import MemberRole
>>> member_a = mlist.subscribe(address_a, MemberRole.member)
>>> member_b = mlist.subscribe(address_b, MemberRole.member)
>>> member_c = mlist.subscribe(address_c, MemberRole.member)
>>> member_d = mlist.subscribe(address_d, MemberRole.member)
>>> member_e = mlist.subscribe(address_e, MemberRole.member)
>>> member_f = mlist.subscribe(address_f, MemberRole.member)

…then make some of the members digest members.

>>> from mailman.interfaces.member import DeliveryMode
>>> member_d.preferences.delivery_mode = DeliveryMode.plaintext_digests
>>> member_e.preferences.delivery_mode = DeliveryMode.mime_digests
>>> member_f.preferences.delivery_mode = DeliveryMode.summary_digests

Regular delivery recipients

Regular delivery recipients are those people who get messages from the list as
soon as they are posted. In other words, these folks are not digest members.

>>> msg = message_from_string("""\
... From: Xavier Person <xperson@example.com>
...
... Something of great import.
... """)
>>> msgdata = {}
>>> handler = config.handlers['member-recipients']
>>> handler.process(mlist, msg, msgdata)
>>> dump_list(msgdata['recipients'])
aperson@example.com
bperson@example.com
cperson@example.com

Members can elect not to receive a list copy of their own postings.

>>> member_c.preferences.receive_own_postings = False
>>> msg = message_from_string("""\
... From: Claire Person <cperson@example.com>
...
... Something of great import.
... """)
>>> msgdata = {}
>>> handler.process(mlist, msg, msgdata)
>>> dump_list(msgdata['recipients'])
aperson@example.com
bperson@example.com

Members can also elect not to receive a list copy of any message on which they
are explicitly named as a recipient. However, see the avoid duplicates
handler for details.

Digest recipients

XXX Test various digest deliveries.

Urgent messages

	XXX Test various urgent deliveries:

	
	test_urgent_moderator()

	test_urgent_admin()

	test_urgent_reject()

NNTP Gateway

Mailman has an NNTP gateway, whereby messages posted to the mailing list can
be forwarded onto an NNTP newsgroup.

>>> mlist = create_list('test@example.com')

Gatewaying from the mailing list to the newsgroup happens through a separate
nntp queue and happen immediately when the message is posted through to
the list. Note that gatewaying from the newsgroup to the list happens via a
separate process.

There are several situations which prevent a message from being gatewayed to
the newsgroup. The feature could be disabled, as is the default.

>>> mlist.gateway_to_news = False
>>> msg = message_from_string("""\
... Subject: An important message
...
... Something of great import.
... """)

>>> handler = config.handlers['to-usenet']
>>> handler.process(mlist, msg, {})
>>> from mailman.testing.helpers import get_queue_messages
>>> get_queue_messages('nntp')
[]

Even if enabled, messages that came from the newsgroup are never gated back to
the newsgroup.

>>> mlist.gateway_to_news = True
>>> handler.process(mlist, msg, dict(fromusenet=True))
>>> get_queue_messages('nntp')
[]

Neither are digests ever gated to the newsgroup.

>>> handler.process(mlist, msg, dict(isdigest=True))
>>> get_queue_messages('nntp')
[]

However, other posted messages get gated to the newsgroup via the nntp queue.
The list owner can set the linked newsgroup and the nntp host that its
messages are gated to.

>>> mlist.linked_newsgroup = 'comp.lang.thing'
>>> mlist.nntp_host = 'news.example.com'
>>> handler.process(mlist, msg, {})
>>> messages = get_queue_messages('nntp')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: An important message

Something of great import.

>>> dump_msgdata(messages[0].msgdata)
_parsemsg: False
listid : test.example.com
version : 3

List owner recipients

When a message is posted to a mailing list’s -owners address, all of the
list’s administrators will receive a copy. The administrators are defined as
the set of owners and moderators.

>>> mlist_1 = create_list('alpha@example.com')

Anne is the owner of the list and Bart is a moderator of the list.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)
>>> anne_addr = user_manager.create_address('anne@example.com')
>>> bart_addr = user_manager.create_address('bart@example.com')
>>> from mailman.interfaces.member import MemberRole
>>> anne = mlist_1.subscribe(anne_addr, MemberRole.owner)
>>> bart = mlist_1.subscribe(bart_addr, MemberRole.moderator)

The recipients list for the -owners address includes both Anne and Bart.

>>> msg = message_from_string("""\
... From: Xavier Person <xperson@example.com>
... To: alpha@example.com
...
... """)
>>> msgdata = {}
>>> handler = config.handlers['owner-recipients']
>>> handler.process(mlist_1, msg, msgdata)
>>> dump_list(msgdata['recipients'])
anne@example.com
bart@example.com

Anne disables her owner delivery, so she will not receive -owner emails.

>>> from mailman.interfaces.member import DeliveryStatus
>>> anne.preferences.delivery_status = DeliveryStatus.by_user
>>> msgdata = {}
>>> handler.process(mlist_1, msg, msgdata)
>>> dump_list(msgdata['recipients'])
bart@example.com

If Bart also disables his owner delivery, then no one could contact the list’s
owners. Since this is unacceptable, the site owner is used as a fallback.

>>> bart.preferences.delivery_status = DeliveryStatus.by_user
>>> msgdata = {}
>>> handler.process(mlist_1, msg, msgdata)
>>> dump_list(msgdata['recipients'])
noreply@example.com

For mailing lists which have no owners at all, the site owner is also used as
a fallback.

>>> mlist_2 = create_list('beta@example.com')
>>> print(mlist_2.administrators.member_count)
0
>>> msgdata = {}
>>> handler.process(mlist_2, msg, msgdata)
>>> dump_list(msgdata['recipients'])
noreply@example.com

Reply-to munging

Messages that flow through the global pipeline get their headers cooked,
which basically means that their headers go through several mostly unrelated
transformations. Some headers get added, others get changed. Some of these
changes depend on mailing list settings and others depend on how the message
is getting sent through the system. We’ll take things one-by-one.

>>> mlist = create_list('_xtest@example.com')

Reply-to munging refers to the behavior where a mailing list can be
configured to change or augment an existing Reply-To header in a message
posted to the list. Reply-to munging is fairly controversial, with arguments
made either for or against munging.

The Mailman developers, and I believe the majority consensus is to do no
reply-to munging, under several principles. Primarily, most reply-to munging
is requested by people who do not have both a Reply and Reply All button
on their mail reader. If you do not munge Reply-To, then these buttons
will work properly, but if you munge the header, it is impossible for these
buttons to work right, because both will reply to the list. This leads to
unfortunate accidents where a private message is accidentally posted to the
entire list.

However, Mailman gives list owners the option to do reply-To munging anyway,
mostly as a way to shut up the really vocal minority who seem to insist on
this mis-feature.

Reply to list

A list can be configured to add a Reply-To header pointing back to the
mailing list’s posting address. If there’s no Reply-To header in the
original message, the list’s posting address simply gets inserted.

>>> from mailman.interfaces.mailinglist import ReplyToMunging
>>> mlist.reply_goes_to_list = ReplyToMunging.point_to_list
>>> mlist.preferred_language = 'en'
>>> mlist.description = ''
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)

>>> from mailman.handlers.cook_headers import process
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
_xtest@example.com

It’s also possible to strip any existing Reply-To header first, before
adding the list’s posting address.

>>> mlist.first_strip_reply_to = True
>>> msg = message_from_string("""\
... From: aperson@example.com
... Reply-To: bperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
_xtest@example.com

If you don’t first strip the header, then the list’s posting address will just
get appended to whatever the original version was.

>>> mlist.first_strip_reply_to = False
>>> msg = message_from_string("""\
... From: aperson@example.com
... Reply-To: bperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
bperson@example.com, _xtest@example.com

Explicit Reply-To

The list can also be configured to have an explicit Reply-To header.

>>> mlist.reply_goes_to_list = ReplyToMunging.explicit_header
>>> mlist.reply_to_address = 'my-list@example.com'
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
my-list@example.com

And as before, it’s possible to either strip any existing Reply-To
header…

>>> mlist.first_strip_reply_to = True
>>> msg = message_from_string("""\
... From: aperson@example.com
... Reply-To: bperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
my-list@example.com

…or not.

>>> mlist.first_strip_reply_to = False
>>> msg = message_from_string("""\
... From: aperson@example.com
... Reply-To: bperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> len(msg.get_all('reply-to'))
1
>>> print(msg['reply-to'])
my-list@example.com, bperson@example.com

Automatic response handler

Mailman has a autoreply handler that sends automatic responses to messages it
receives on its posting address, owner address, or robot address. Automatic
responses are subject to various conditions, such as headers in the original
message or the amount of time since the last auto-response.

>>> mlist = create_list('_xtest@example.com')
>>> mlist.display_name = 'XTest'

Basic automatic responding

Basic automatic responding occurs when the list is set up to respond to either
its -owner address, its -request address, or to the posting address,
and a message is sent to one of these addresses. A mailing list also has an
automatic response grace period which specifies how much time must pass before
a second response will be sent, with 0 meaning “there is no grace period”.

>>> from datetime import timedelta
>>> from mailman.interfaces.autorespond import ResponseAction

>>> mlist.autorespond_owner = ResponseAction.respond_and_continue
>>> mlist.autoresponse_grace_period = timedelta()
>>> mlist.autoresponse_owner_text = 'owner autoresponse text'

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest-owner@example.com
...
... help
... """)

The preceding message to the mailing list’s owner will trigger an automatic
response.

>>> from mailman.testing.helpers import get_queue_messages

>>> handler = config.handlers['replybot']
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : _xtest.example.com
nodecorate : True
recipients : {'aperson@example.com'}
reduced_list_headers: True
version : 3

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Auto-response for your message to the "XTest" mailing list
From: _xtest-bounces@example.com
To: aperson@example.com
X-Mailer: The Mailman Replybot
X-Ack: No
Message-ID: <...>
Date: ...
Precedence: bulk

owner autoresponse text

Short circuiting

Several headers in the original message determine whether an automatic
response should even be sent. For example, if the message has an
X-Ack: No header, no auto-response is sent.

>>> msg = message_from_string("""\
... From: aperson@example.com
... X-Ack: No
...
... help me
... """)

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> get_queue_messages('virgin')
[]

Mailman itself can suppress automatic responses for certain types of
internally crafted messages, by setting the noack metadata key.

>>> msg = message_from_string("""\
... From: mailman@example.com
...
... help for you
... """)

>>> handler.process(mlist, msg, dict(noack=True, to_owner=True))
>>> get_queue_messages('virgin')
[]

If there is a Precedence: header with any of the values bulk,
junk, or list, then the automatic response is also suppressed.

>>> msg = message_from_string("""\
... From: asystem@example.com
... Precedence: bulk
...
... hey!
... """)

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> get_queue_messages('virgin')
[]

>>> msg.replace_header('precedence', 'junk')
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> get_queue_messages('virgin')
[]

>>> msg.replace_header('precedence', 'list')
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> get_queue_messages('virgin')
[]

Unless the X-Ack: header has a value of yes, in which case, the
Precedence header is ignored.

>>> msg['X-Ack'] = 'yes'
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : _xtest.example.com
nodecorate : True
recipients : {'asystem@example.com'}
reduced_list_headers: True
version : 3

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Auto-response for your message to the "XTest" mailing list
From: _xtest-bounces@example.com
To: asystem@example.com
X-Mailer: The Mailman Replybot
X-Ack: No
Message-ID: <...>
Date: ...
Precedence: bulk

owner autoresponse text

Available auto-responses

As shown above, a message sent to the -owner address will get an
auto-response with the text set for owner responses. Two other types of email
will get auto-responses: those sent to the -request address…

>>> mlist.autorespond_requests = ResponseAction.respond_and_continue
>>> mlist.autoresponse_request_text = 'robot autoresponse text'

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest-request@example.com
...
... help me
... """)

>>> handler.process(mlist, msg, dict(to_request=True))
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Auto-response for your message to the "XTest" mailing list
From: _xtest-bounces@example.com
To: aperson@example.com
X-Mailer: The Mailman Replybot
X-Ack: No
Message-ID: <...>
Date: ...
Precedence: bulk

robot autoresponse text

…and those sent to the posting address.

>>> mlist.autorespond_postings = ResponseAction.respond_and_continue
>>> mlist.autoresponse_postings_text = 'postings autoresponse text'

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com
...
... help me
... """)

>>> handler.process(mlist, msg, dict(to_list=True))
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
Subject: Auto-response for your message to the "XTest" mailing list
From: _xtest-bounces@example.com
To: aperson@example.com
X-Mailer: The Mailman Replybot
X-Ack: No
Message-ID: <...>
Date: ...
Precedence: bulk

postings autoresponse text

Grace periods

Automatic responses have a grace period, during which no additional responses
will be sent. This is so as not to bombard the sender with responses. The
grace period is measured in days.

>>> mlist.autoresponse_grace_period = timedelta(days=10)

When a response is sent to a person via any of the owner, request, or postings
addresses, the response date is recorded. The grace period is usually
measured in days.

>>> msg = message_from_string("""\
... From: bperson@example.com
... To: _xtest-owner@example.com
...
... help
... """)

This is the first response to bperson, so it gets sent.

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> len(get_queue_messages('virgin'))
1

But with a grace period greater than zero, no subsequent response will be sent
right now.

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> len(get_queue_messages('virgin'))
0

Fast forward 9 days and you still don’t get a response.

>>> from mailman.utilities.datetime import factory
>>> factory.fast_forward(days=9)

>>> handler.process(mlist, msg, dict(to_owner=True))
>>> len(get_queue_messages('virgin'))
0

But tomorrow, the sender will get a new auto-response.

>>> factory.fast_forward()
>>> handler.process(mlist, msg, dict(to_owner=True))
>>> len(get_queue_messages('virgin'))
1

Of course, everything works the same way for messages to the request
address, even if the sender is the same person…

>>> msg = message_from_string("""\
... From: bperson@example.com
... To: _xtest-request@example.com
...
... help
... """)

>>> handler.process(mlist, msg, dict(to_request=True))
>>> len(get_queue_messages('virgin'))
1

>>> handler.process(mlist, msg, dict(to_request=True))
>>> len(get_queue_messages('virgin'))
0

>>> factory.fast_forward(days=9)
>>> handler.process(mlist, msg, dict(to_request=True))
>>> len(get_queue_messages('virgin'))
0

>>> factory.fast_forward()
>>> handler.process(mlist, msg, dict(to_request=True))
>>> len(get_queue_messages('virgin'))
1

…and for messages to the posting address.

>>> msg = message_from_string("""\
... From: bperson@example.com
... To: _xtest@example.com
...
... help
... """)

>>> handler.process(mlist, msg, dict(to_list=True))
>>> len(get_queue_messages('virgin'))
1

>>> handler.process(mlist, msg, dict(to_list=True))
>>> len(get_queue_messages('virgin'))
0

>>> factory.fast_forward(days=9)
>>> handler.process(mlist, msg, dict(to_list=True))
>>> len(get_queue_messages('virgin'))
0

>>> factory.fast_forward()
>>> handler.process(mlist, msg, dict(to_list=True))
>>> len(get_queue_messages('virgin'))
1

RFC 2919 and 2369 headers

RFC 2919 [http://www.faqs.org/rfcs/rfc2919.html] and RFC 2369 [http://www.faqs.org/rfcs/rfc2369.html] define headers for mailing list actions. These
headers generally start with the List- prefix.

>>> mlist = create_list('test@example.com')
>>> mlist.preferred_language = 'en'
>>> from mailman.interfaces.archiver import ArchivePolicy
>>> mlist.archive_policy = ArchivePolicy.never

The rfc-2369 handler adds the List- headers. List-Id is always added.

>>> from mailman.handlers.rfc_2369 import process
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg, 'list-id')
---start---
list-id: <test.example.com>
---end---

Fewer headers

Some people don’t like these headers because their mail readers aren’t good
about hiding them. A list owner can turn these headers off.

>>> mlist.include_rfc2369_headers = False
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg)
---start---
---end---

Messages which Mailman generates itself, such as user or owner notifications,
have a reduced set of List- headers. Specifically, there is no List-Post,
List-Archive or Archived-At header.
..

>>> mlist.include_rfc2369_headers = True
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)

>>> process(mlist, msg, dict(reduced_list_headers=True))
>>> list_headers(msg)
---start---
list-help: <mailto:test-request@example.com?subject=help>
list-id: <test.example.com>
list-subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
list-unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
---end---

List-Post header

Discussion lists, to which any subscriber can post, also have a List-Post
header which contains the mailto: URL used to send messages to the list.

>>> mlist.include_rfc2369_headers = True
>>> mlist.allow_list_posts = True
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg)
---start---
list-help: <mailto:test-request@example.com?subject=help>
list-id: <test.example.com>
list-post: <mailto:test@example.com>
list-subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
list-unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
---end---

Some mailing lists are announce, or one-way lists, not discussion lists.
Because the general membership cannot post to these mailing lists, the list
owner can set a flag which adds a special List-Post header value, according
to RFC 2369.

>>> mlist.allow_list_posts = False
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg)
---start---
list-help: <mailto:test-request@example.com?subject=help>
list-id: <test.example.com>
list-post: NO
list-subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
list-unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
---end---

List-Id header

If the mailing list has a description, then it is included in the List-Id
header.

>>> mlist.allow_list_posts = True
>>> mlist.description = 'My test mailing list'
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... """)
>>> process(mlist, msg, {})
>>> list_headers(msg)
---start---
list-help: <mailto:test-request@example.com?subject=help>
list-id: My test mailing list <test.example.com>
list-post: <mailto:test@example.com>
list-subscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-join@example.com>
list-unsubscribe: <http://lists.example.com/listinfo/test@example.com>,
 <mailto:test-leave@example.com>
---end---

Any existing List-Id headers are removed from the original message.

>>> msg = message_from_string("""\
... From: aperson@example.com
... List-ID: <123.456.789>
...
... """)

>>> process(mlist, msg, {})
>>> list_headers(msg, only='list-id')
---start---
list-id: My test mailing list <test.example.com>
---end---

Archive headers

When the mailing list is configured to enable archiving, List-Archive
headers will be added for each web accessible archiver that is enabled.

RFC 5064 [http://www.faqs.org/rfcs/rfc5064.html] defines the Archived-At header which contains the url to the
individual message in the archives. Archivers which don’t support
pre-calculation of the archive url cannot add the Archived-At header.
However, other archivers can calculate the url, and do add this header.

If the mailing list isn’t being archived, neither the List-Archive nor
Archived-At headers will be added.

Subject prefixes

Mailing lists can define a subject prefix which gets added to the front of
any Subject text. This can be used to quickly identify which mailing list
the message was posted to.

>>> mlist = create_list('test@example.com')

The default list style gives the mailing list a default prefix.

>>> print(mlist.subject_prefix)
[Test]

This can be changed to anything, but typically ends with a trailing space.

>>> mlist.subject_prefix = '[XTest] '
>>> process = config.handlers['subject-prefix'].process

No Subject

If the original message has no Subject, then a canned one is used.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] (no subject)

Inserting a prefix

If the original message had a Subject header, then the prefix is inserted
at the beginning of the header’s value.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: Something important
...
... A message of great import.
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg['subject'])
[XTest] Something important

The original Subject is available in the metadata.

>>> print(msgdata['original_subject'])
Something important

If a Subject header already has a prefix, usually following a Re:
marker, another one will not be added but the prefix will be moved to the
front of the header text.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: Re: [XTest] Something important
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] Re: Something important

If the Subject header has a prefix at the front of the header text, that’s
where it will stay.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: [XTest] Re: Something important
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] Re: Something important

Sometimes the incoming Subject header has a pathological sequence of
Re: like markers. These should all be collapsed up to the first non-Re:
marker.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: [XTest] Re: RE : Re: Re: Re: Re: Re: Something important
...
... A message of great import.
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] Re: Something important

Internationalized headers

Internationalization adds some interesting twists to the handling of subject
prefixes. Part of what makes this interesting is the encoding of i18n headers
using RFC 2047, and lists whose preferred language is in a different character
set than the encoded header.

>>> msg = message_from_string("""\
... Subject: =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest] =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(str(msg['subject']))
[XTest] メールマン

Prefix numbers

Subject prefixes support a placeholder for the numeric post id. Every time a
message is posted to the mailing list, a post id gets incremented. This is
a purely sequential integer that increases monotonically. By added a %d
placeholder to the subject prefix, this post id can be included in the prefix.

>>> mlist.subject_prefix = '[XTest %d] '
>>> mlist.post_id = 456
>>> msg = message_from_string("""\
... Subject: Something important
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest 456] Something important

This works even when the message is a reply, except that in this case, the
numeric post id in the generated subject prefix is updated with the new post
id.

>>> msg = message_from_string("""\
... Subject: [XTest 123] Re: Something important
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest 456] Re: Something important

If the Subject header had old style prefixing, the prefix is moved to the
front of the header text.

>>> msg = message_from_string("""\
... Subject: Re: [XTest 123] Something important
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest 456] Re: Something important

And of course, the proper thing is done when posting id numbers are included
in the subject prefix, and the subject is encoded non-ASCII.

>>> msg = message_from_string("""\
... Subject: =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest 456] =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(msg['subject'])
[XTest 456] メールマン

Even more fun is when the internationalized Subject header already has a
prefix, possibly with a different posting number.

>>> msg = message_from_string("""\
... Subject: [XTest 123] Re: =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest 456] Re: =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(msg['subject'])
[XTest 456] Re: メールマン

As before, old style subject prefixes are re-ordered.

>>> msg = message_from_string("""\
... Subject: Re: [XTest 123] =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest 456] Re:
 =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(msg['subject'])
[XTest 456] Re: メールマン

In this test case, we get an extra space between the prefix and the original
subject. It’s because the original is crooked. Note that a Subject
starting with ‘n ‘ is generated by some version of Eudora Japanese edition.

>>> mlist.subject_prefix = '[XTest] '
>>> msg = message_from_string("""\
... Subject:
... Important message
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'])
[XTest] Important message

And again, with an RFC 2047 encoded header.

>>> msg = message_from_string("""\
... Subject:
... =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
...
... """)
>>> process(mlist, msg, {})
>>> print(msg['subject'].encode())
[XTest] =?iso-2022-jp?b?GyRCJWEhPCVrJV4lcxsoQg==?=
>>> print(msg['subject'])
[XTest] メールマン

Message tagger

Mailman has a topics system which works like this: a mailing list
administrator sets up one or more topics, which is essentially a named regular
expression. The topic name can be any arbitrary string, and the name serves
double duty as the topic tag. Each message that flows the mailing list has
its Subject: and Keywords: headers compared against these regular
expressions. The message then gets tagged with the topic names of each hit.

>>> mlist = create_list('_xtest@example.com')

Topics must be enabled for Mailman to do any topic matching, even if topics
are defined.

>>> mlist.topics = [('bar fight', '.*bar.*', 'catch any bars', False)]
>>> mlist.topics_enabled = False
>>> mlist.topics_bodylines_limit = 0

>>> msg = message_from_string("""\
... Subject: foobar
... Keywords: barbaz
...
... """)
>>> msgdata = {}

>>> from mailman.handlers.tagger import process
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
Subject: foobar
Keywords: barbaz

>>> msgdata
{}

However, once topics are enabled, message will be tagged. There are two
artifacts of tagging; an X-Topics: header is added with the topic name,
and the message metadata gets a key with a list of matching topic names.

>>> mlist.topics_enabled = True
>>> msg = message_from_string("""\
... Subject: foobar
... Keywords: barbaz
...
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
Subject: foobar
Keywords: barbaz
X-Topics: bar fight
<BLANKLINE>
<BLANKLINE>
>>> msgdata['topichits']
['bar fight']

Scanning body lines

The tagger can also look at a certain number of body lines, but only for
Subject: and Keyword: header-like lines. When set to zero, no body
lines are scanned.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: nothing
... Keywords: at all
...
... X-Ignore: something else
... Subject: foobar
... Keywords: barbaz
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Subject: nothing
Keywords: at all
<BLANKLINE>
X-Ignore: something else
Subject: foobar
Keywords: barbaz
<BLANKLINE>
>>> msgdata
{}

But let the tagger scan a few body lines and the matching headers will be
found.

>>> mlist.topics_bodylines_limit = 5
>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: nothing
... Keywords: at all
...
... X-Ignore: something else
... Subject: foobar
... Keywords: barbaz
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Subject: nothing
Keywords: at all
X-Topics: bar fight
<BLANKLINE>
X-Ignore: something else
Subject: foobar
Keywords: barbaz
<BLANKLINE>
>>> msgdata['topichits']
['bar fight']

However, scanning stops at the first body line that doesn’t look like a
header.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: nothing
... Keywords: at all
...
... This is not a header
... Subject: foobar
... Keywords: barbaz
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
From: aperson@example.com
Subject: nothing
Keywords: at all
<BLANKLINE>
This is not a header
Subject: foobar
Keywords: barbaz
>>> msgdata
{}

When set to a negative number, all body lines will be scanned.

>>> mlist.topics_bodylines_limit = -1
>>> lots_of_headers = '\n'.join(['X-Ignore: zip'] * 100)
>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: nothing
... Keywords: at all
...
... %s
... Subject: foobar
... Keywords: barbaz
... """ % lots_of_headers)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> # Rather than print out 100 X-Ignore: headers, let's just prove that
>>> # the X-Topics: header exists, meaning that the tagger did its job.
>>> print(msg['x-topics'])
bar fight
>>> msgdata['topichits']
['bar fight']

Scanning sub-parts

The tagger will also scan the body lines of text subparts in a multipart
message, using the same rules as if all those body lines lived in a single
text payload.

>>> msg = message_from_string("""\
... Subject: Was
... Keywords: Raw
... Content-Type: multipart/alternative; boundary="BOUNDARY"
...
... --BOUNDARY
... From: sabo
... To: obas
...
... Subject: farbaw
... Keywords: barbaz
...
... --BOUNDARY--
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg.as_string())
Subject: Was
Keywords: Raw
Content-Type: multipart/alternative; boundary="BOUNDARY"
X-Topics: bar fight
<BLANKLINE>
--BOUNDARY
From: sabo
To: obas
<BLANKLINE>
Subject: farbaw
Keywords: barbaz
<BLANKLINE>
--BOUNDARY--
<BLANKLINE>
>>> msgdata['topichits']
['bar fight']

But the tagger will not descend into non-text parts.

>>> msg = message_from_string("""\
... Subject: Was
... Keywords: Raw
... Content-Type: multipart/alternative; boundary=BOUNDARY
...
... --BOUNDARY
... From: sabo
... To: obas
... Content-Type: message/rfc822
...
... Subject: farbaw
... Keywords: barbaz
...
... --BOUNDARY
... From: sabo
... To: obas
... Content-Type: message/rfc822
...
... Subject: farbaw
... Keywords: barbaz
...
... --BOUNDARY--
... """)
>>> msgdata = {}
>>> process(mlist, msg, msgdata)
>>> print(msg['x-topics'])
None
>>> msgdata
{}

The outgoing handler

Mailman’s outgoing queue is used as the wrapper around SMTP delivery to the
upstream mail server. The to-outgoing handler does little more than drop the
message into the outgoing queue.

>>> mlist = create_list('test@example.com')

Craft a message destined for the outgoing queue. Include some random metadata
as if this message had passed through some other handlers.

>>> msg = message_from_string("""\
... Subject: Here is a message
...
... Something of great import.
... """)

>>> msgdata = dict(foo=1, bar=2, verp=True)
>>> handler = config.handlers['to-outgoing']
>>> handler.process(mlist, msg, msgdata)

While the queued message will not be changed, the queued metadata will have an
additional key set: the mailing list name.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('out')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
Subject: Here is a message
<BLANKLINE>
Something of great import.
>>> dump_msgdata(messages[0].msgdata)
_parsemsg: False
bar : 2
foo : 1
listid : test.example.com
verp : True
version : 3

Email addresses

Addresses represent a text email address, along with some meta data about
those addresses, such as their registration date, and whether and when they’ve
been validated. Addresses may be linked to the users that Mailman knows
about. Addresses are subscribed to mailing lists though members.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

Creating addresses

Addresses are created directly through the user manager, which starts out with
no addresses.

>>> dump_list(address.email for address in user_manager.addresses)
Empty

Creating an unlinked email address is straightforward.

>>> address_1 = user_manager.create_address('aperson@example.com')
>>> dump_list(address.email for address in user_manager.addresses)
aperson@example.com

However, such addresses have no real name.

>>> print(address_1.display_name)
<BLANKLINE>

You can also create an email address object with a real name.

>>> address_2 = user_manager.create_address(
... 'bperson@example.com', 'Ben Person')
>>> dump_list(address.email for address in user_manager.addresses)
aperson@example.com
bperson@example.com
>>> dump_list(address.display_name for address in user_manager.addresses)
<BLANKLINE>
Ben Person

The str() of the address is the RFC 2822 preferred originator format,
while the repr() carries more information.

>>> print(str(address_2))
Ben Person <bperson@example.com>
>>> print(repr(address_2))
<Address: Ben Person <bperson@example.com> [not verified] at 0x...>

You can assign real names to existing addresses.

>>> address_1.display_name = 'Anne Person'
>>> dump_list(address.display_name for address in user_manager.addresses)
Anne Person
Ben Person

These addresses are not linked to users, and can be seen by searching the user
manager for an associated user.

>>> print(user_manager.get_user('aperson@example.com'))
None
>>> print(user_manager.get_user('bperson@example.com'))
None

You can create email addresses that are linked to users by using a different
interface.

>>> user_1 = user_manager.create_user(
... 'cperson@example.com', u'Claire Person')
>>> dump_list(address.email for address in user_1.addresses)
cperson@example.com
>>> dump_list(address.email for address in user_manager.addresses)
aperson@example.com
bperson@example.com
cperson@example.com
>>> dump_list(address.display_name for address in user_manager.addresses)
Anne Person
Ben Person
Claire Person

And now you can find the associated user.

>>> print(user_manager.get_user('aperson@example.com'))
None
>>> print(user_manager.get_user('bperson@example.com'))
None
>>> user_manager.get_user('cperson@example.com')
<User "Claire Person" (...) at ...>

Deleting addresses

You can remove an unlinked address from the user manager.

>>> user_manager.delete_address(address_1)
>>> dump_list(address.email for address in user_manager.addresses)
bperson@example.com
cperson@example.com
>>> dump_list(address.display_name for address in user_manager.addresses)
Ben Person
Claire Person

Deleting a linked address does not delete the user, but it does unlink the
address from the user.

>>> dump_list(address.email for address in user_1.addresses)
cperson@example.com
>>> user_1.controls('cperson@example.com')
True
>>> address_3 = list(user_1.addresses)[0]
>>> user_manager.delete_address(address_3)
>>> dump_list(address.email for address in user_1.addresses)
Empty
>>> user_1.controls('cperson@example.com')
False
>>> dump_list(address.email for address in user_manager.addresses)
bperson@example.com

Registration and verification

Addresses have two dates, the date the address was registered on and the date
the address was validated on. The former is set when the address is created,
but the latter must be set explicitly.

>>> address_4 = user_manager.create_address(
... 'dperson@example.com', 'Dan Person')
>>> print(address_4.registered_on)
2005-08-01 07:49:23
>>> print(address_4.verified_on)
None

The verification date records when the user has completed a mail-back
verification procedure. It takes a datetime object.

>>> from mailman.utilities.datetime import now
>>> address_4.verified_on = now()
>>> print(address_4.verified_on)
2005-08-01 07:49:23

The address shows the verified status in its representation.

>>> address_4
<Address: Dan Person <dperson@example.com> [verified] at ...>

An event is triggered when the address gets verified.

>>> saved_event = None
>>> address_5 = user_manager.create_address(
... 'eperson@example.com', 'Elle Person')
>>> def save_event(event):
... global saved_event
... saved_event = event
>>> from mailman.testing.helpers import event_subscribers
>>> with event_subscribers(save_event):
... address_5.verified_on = now()
>>> print(saved_event)
<AddressVerificationEvent eperson@example.com 2005-08-01 07:49:23>

An event is also triggered when the address is unverified. In this case,
check the event’s address’s verified_on attribute; if this is None, then the
address is being unverified.

>>> with event_subscribers(save_event):
... address_5.verified_on = None
>>> print(saved_event)
<AddressVerificationEvent eperson@example.com unverified>
>>> print(saved_event.address.verified_on)
None

Case-preserved addresses

Technically speaking, email addresses are case sensitive in the local part.
Mailman preserves the case of addresses and uses the case preserved version
when sending the user a message, but it treats addresses that are different in
case equivalently in all other situations.

>>> address_6 = user_manager.create_address(
... 'FPERSON@example.com', 'Frank Person')

The str() of such an address prints the RFC 2822 preferred originator format
with the original case-preserved address. The repr() contains all the gory
details.

>>> print(str(address_6))
Frank Person <FPERSON@example.com>
>>> print(repr(address_6))
<Address: Frank Person <FPERSON@example.com> [not verified]
 key: fperson@example.com at 0x...>

Both the case-insensitive version of the address and the original
case-preserved version are available on attributes of the IAddress object.

>>> print(address_6.email)
fperson@example.com
>>> print(address_6.original_email)
FPERSON@example.com

Because addresses are case-insensitive for all other purposes, you cannot
create an address that differs only in case. You can get the address using
either the lower cased version or case-preserved version. In fact, searching
for an address is case insensitive.

>>> print(user_manager.get_address('fperson@example.com').email)
fperson@example.com
>>> print(user_manager.get_address('FPERSON@example.com').email)
fperson@example.com

Automatic responder

In various situations, Mailman will send an automatic response to the author
of an email message. For example, if someone sends a command to the
-request address, Mailman will send a response, but to cut down on third
party spam, the sender will only get a certain number of responses per day.

First, given a mailing list you need to adapt it to an IAutoResponseSet.

>>> mlist = create_list('test@example.com')
>>> from mailman.interfaces.autorespond import IAutoResponseSet
>>> response_set = IAutoResponseSet(mlist)

>>> from zope.interface.verify import verifyObject
>>> verifyObject(IAutoResponseSet, response_set)
True

You can’t adapt other objects to an IAutoResponseSet.

>>> IAutoResponseSet(object())
Traceback (most recent call last):
...
TypeError: ('Could not adapt', ...

There are various kinds of response types. For example, Mailman will send an
automatic response when messages are held for approval, or when it receives an
email command. You can find out how many responses for a particular address
have already been sent today.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> address = getUtility(IUserManager).create_address(
... 'aperson@example.com')

>>> from mailman.interfaces.autorespond import Response
>>> print(response_set.todays_count(address, Response.hold))
0
>>> print(response_set.todays_count(address, Response.command))
0

Using the response set, we can record that a hold response is sent to the
address.

>>> response_set.response_sent(address, Response.hold)
>>> print(response_set.todays_count(address, Response.hold))
1
>>> print(response_set.todays_count(address, Response.command))
0

We can also record that a command response was sent.

>>> response_set.response_sent(address, Response.command)
>>> print(response_set.todays_count(address, Response.hold))
1
>>> print(response_set.todays_count(address, Response.command))
1

Let’s send one more.

>>> response_set.response_sent(address, Response.command)
>>> print(response_set.todays_count(address, Response.hold))
1
>>> print(response_set.todays_count(address, Response.command))
2

Now the day flips over and all the counts reset.

>>> from mailman.utilities.datetime import factory
>>> factory.fast_forward()

>>> print(response_set.todays_count(address, Response.hold))
0
>>> print(response_set.todays_count(address, Response.command))
0

Response dates

You can also use the response set to get the date of the last response sent.

>>> response = response_set.last_response(address, Response.hold)
>>> response.mailing_list
<mailing list "test@example.com" at ...>
>>> response.address
<Address: aperson@example.com [not verified] at ...>
>>> response.response_type
<Response.hold: 1>
>>> response.date_sent
datetime.date(2005, 8, 1)

When another response is sent today, that becomes the last one sent.

>>> response_set.response_sent(address, Response.command)
>>> response_set.last_response(address, Response.command).date_sent
datetime.date(2005, 8, 2)

>>> factory.fast_forward(days=3)
>>> response_set.response_sent(address, Response.command)
>>> response_set.last_response(address, Response.command).date_sent
datetime.date(2005, 8, 5)

If there’s been no response sent to a particular address, None is returned.

>>> address = getUtility(IUserManager).create_address(
... 'bperson@example.com')
>>> print(response_set.todays_count(address, Response.command))
0
>>> print(response_set.last_response(address, Response.command))
None

Bounces

When a message to an email address bounces, Mailman’s bounce runner will
register a bounce event. This registration is done through a utility.

>>> from zope.component import getUtility
>>> from zope.interface.verify import verifyObject
>>> from mailman.interfaces.bounce import IBounceProcessor
>>> processor = getUtility(IBounceProcessor)
>>> verifyObject(IBounceProcessor, processor)
True

Registration

When a bounce occurs, it’s always within the context of a specific mailing
list.

>>> mlist = create_list('test@example.com')

The bouncing email contains useful information that will be registered as
well. In particular, the Message-ID is a key piece of data that needs to be
recorded.

>>> msg = message_from_string("""\
... From: mail-daemon@example.org
... To: test-bounces@example.com
... Message-ID: <first>
...
... """)

There is a suite of bounce detectors that are used to heuristically extract
the bouncing email addresses. Various techniques are employed including VERP,
DSN, and magic. It is the bounce runner’s responsibility to extract the set
of bouncing email addresses. These are passed one-by-one to the registration
interface.

>>> event = processor.register(mlist, 'anne@example.com', msg)
>>> print(event.list_id)
test.example.com
>>> print(event.email)
anne@example.com
>>> print(event.message_id)
<first>

Bounce events have a timestamp.

>>> print(event.timestamp)
2005-08-01 07:49:23

Bounce events have a flag indicating whether they’ve been processed or not.

>>> event.processed
False

When a bounce is registered, you can indicate the bounce context.

>>> msg = message_from_string("""\
... From: mail-daemon@example.org
... To: test-bounces@example.com
... Message-ID: <second>
...
... """)

If no context is given, then a default one is used.

>>> event = processor.register(mlist, 'bart@example.com', msg)
>>> print(event.message_id)
<second>
>>> print(event.context)
BounceContext.normal

A probe bounce carries more weight than just a normal bounce.

>>> from mailman.interfaces.bounce import BounceContext
>>> event = processor.register(
... mlist, 'bart@example.com', msg, BounceContext.probe)
>>> print(event.message_id)
<second>
>>> print(event.context)
BounceContext.probe

Domains

Domains are how Mailman interacts with email host names and web host names.

>>> from operator import attrgetter
>>> def show_domains(*, with_owners=False):
... if len(manager) == 0:
... print('no domains')
... return
... for domain in sorted(manager, key=attrgetter('mail_host')):
... print(domain)
... owners = sorted(owner.addresses[0].email
... for owner in domain.owners)
... for owner in owners:
... print('- owner:', owner)

>>> show_domains()
no domains

Adding a domain requires some basic information, of which the email host name
is the only required piece. The other parts are inferred from that.

>>> manager.add('example.org')
<Domain example.org, base_url: http://example.org>
>>> show_domains()
<Domain example.org, base_url: http://example.org>

We can remove domains too.

>>> manager.remove('example.org')
<Domain example.org, base_url: http://example.org>
>>> show_domains()
no domains

Sometimes the email host name is different than the base url for hitting the
web interface for the domain.

>>> manager.add('example.com', base_url='https://mail.example.com')
<Domain example.com, base_url: https://mail.example.com>
>>> show_domains()
<Domain example.com, base_url: https://mail.example.com>

Domains can have explicit descriptions, and can be created with one or more
owners.

>>> manager.add(
... 'example.net',
... base_url='http://lists.example.net',
... description='The example domain',
... owners=['anne@example.com'])
<Domain example.net, The example domain,
 base_url: http://lists.example.net>

>>> show_domains(with_owners=True)
<Domain example.com, base_url: https://mail.example.com>
<Domain example.net, The example domain,
 base_url: http://lists.example.net>
- owner: anne@example.com

Domains can have multiple owners, ideally one of the owners should have a
verified preferred address. However this is not checked right now and the
configuration’s default contact address may be used as a fallback.

>>> net_domain = manager['example.net']
>>> net_domain.add_owner('bart@example.org')
>>> show_domains(with_owners=True)
<Domain example.com, base_url: https://mail.example.com>
<Domain example.net, The example domain, base_url: http://lists.example.net>
- owner: anne@example.com
- owner: bart@example.org

Domains can list all associated mailing lists with the mailing_lists property.

>>> def show_lists(domain):
... mlists = list(domain.mailing_lists)
... for mlist in mlists:
... print(mlist)
... if len(mlists) == 0:
... print('no lists')

>>> net_domain = manager['example.net']
>>> com_domain = manager['example.com']
>>> show_lists(net_domain)
no lists

>>> create_list('test@example.net')
<mailing list "test@example.net" at ...>
>>> transaction.commit()
>>> show_lists(net_domain)
<mailing list "test@example.net" at ...>

>>> show_lists(com_domain)
no lists

In the global domain manager, domains are indexed by their email host name.

>>> for domain in sorted(manager, key=attrgetter('mail_host')):
... print(domain.mail_host)
example.com
example.net

>>> print(manager['example.net'])
<Domain example.net, The example domain,
 base_url: http://lists.example.net>

As with dictionaries, you can also get the domain. If the domain does not
exist, None or a default is returned.

>>> print(manager.get('example.net'))
<Domain example.net, The example domain,
 base_url: http://lists.example.net>

>>> print(manager.get('doesnotexist.com'))
None

>>> print(manager.get('doesnotexist.com', 'blahdeblah'))
blahdeblah

Confirmation tokens

Confirmation tokens can be added to the domain’s url to generate the URL to a
page users can use to confirm their subscriptions.

>>> domain = manager['example.net']
>>> print(domain.confirm_url('abc'))
http://lists.example.net/confirm/abc

Languages

Mailman is multilingual. A language manager handles the known set of
languages at run time, as well as enabling those languages for use in a
running Mailman instance.

>>> from mailman.interfaces.languages import ILanguageManager
>>> from zope.component import getUtility
>>> from zope.interface.verify import verifyObject

>>> mgr = getUtility(ILanguageManager)
>>> verifyObject(ILanguageManager, mgr)
True

Make a copy of the language manager's dictionary, so we can restore it
after the test. Currently the test layer doesn't manage this.
>>> saved = mgr._languages.copy()

The language manager component comes pre-populated; clear it out.
>>> mgr.clear()

A language manager keeps track of the languages it knows about.

>>> list(mgr.codes)
[]
>>> list(mgr.languages)
[]

Adding languages

Adding a new language requires three pieces of information, the 2-character
language code, the English description of the language, and the character set
used by the language. The language object is returned.

>>> mgr.add('en', 'us-ascii', 'English')
<Language [en] English>
>>> mgr.add('it', 'iso-8859-1', 'Italian')
<Language [it] Italian>

And you can get information for all known languages.

>>> print(mgr['en'].description)
English
>>> print(mgr['en'].charset)
us-ascii
>>> print(mgr['it'].description)
Italian
>>> print(mgr['it'].charset)
iso-8859-1

Other iterations

You can iterate over all the known language codes.

>>> mgr.add('pl', 'iso-8859-2', 'Polish')
<Language [pl] Polish>
>>> sorted(mgr.codes)
['en', 'it', 'pl']

You can iterate over all the known languages.

>>> from operator import attrgetter
>>> languages = sorted((language for language in mgr.languages),
... key=attrgetter('code'))
>>> for language in languages:
... print(language.code, language.charset, language.description)
en us-ascii English
it iso-8859-1 Italian
pl iso-8859-2 Polish

You can ask whether a particular language code is known.

>>> 'it' in mgr
True
>>> 'xx' in mgr
False

You can get a particular language by its code.

>>> print(mgr['it'].description)
Italian
>>> print(mgr['xx'].code)
Traceback (most recent call last):
...
KeyError: 'xx'
>>> print(mgr.get('it').description)
Italian
>>> print(mgr.get('xx'))
None
>>> print(mgr.get('xx', 'missing'))
missing

Clearing the known languages

The language manager can forget about all the language codes it knows about.

>>> 'en' in mgr
True

>>> mgr.clear()
>>> 'en' in mgr
False

Restore the data.
>>> mgr._languages = saved

The mailing list manager

The IListManager is how you create, delete, and retrieve mailing list
objects.

>>> from mailman.interfaces.listmanager import IListManager
>>> from zope.component import getUtility
>>> list_manager = getUtility(IListManager)

Creating a mailing list

Creating the list returns the newly created IMailList object.

>>> from mailman.interfaces.mailinglist import IMailingList
>>> mlist = list_manager.create('test@example.com')
>>> IMailingList.providedBy(mlist)
True

All lists with identities have a short name, a host name, a fully qualified
listname, and an RFC 2369 [http://www.faqs.org/rfcs/rfc2369.html] list id. This latter will not change even if the
mailing list moves to a different host, so it is what uniquely distinguishes
the mailing list to the system.

>>> print(mlist.list_name)
test
>>> print(mlist.mail_host)
example.com
>>> print(mlist.fqdn_listname)
test@example.com
>>> print(mlist.list_id)
test.example.com

Deleting a mailing list

Use the list manager to delete a mailing list.

>>> list_manager.delete(mlist)
>>> sorted(list_manager.names)
[]

After deleting the list, you can create it again.

>>> mlist = list_manager.create('test@example.com')
>>> print(mlist.fqdn_listname)
test@example.com

Retrieving a mailing list

When a mailing list exists, you can ask the list manager for it and you will
always get the same object back.

>>> mlist_2 = list_manager.get('test@example.com')
>>> mlist_2 is mlist
True

You can also get a mailing list by it’s list id.

>>> mlist_2 = list_manager.get_by_list_id('test.example.com')
>>> mlist_2 is mlist
True

If you try to get a list that doesn’t existing yet, you get None.

>>> print(list_manager.get('test_2@example.com'))
None
>>> print(list_manager.get_by_list_id('test_2.example.com'))
None

You also get None if the list name is invalid.

>>> print(list_manager.get('foo'))
None

Iterating over all mailing lists

Once you’ve created a bunch of mailing lists, you can use the list manager to
iterate over the mailing list objects, the list posting addresses, or the list
address components.

>>> mlist_3 = list_manager.create('test_3@example.com')
>>> mlist_4 = list_manager.create('test_4@example.com')

>>> for name in sorted(list_manager.names):
... print(name)
test@example.com
test_3@example.com
test_4@example.com

>>> for list_id in sorted(list_manager.list_ids):
... print(list_id)
test.example.com
test_3.example.com
test_4.example.com

>>> for fqdn_listname in sorted(m.fqdn_listname
... for m in list_manager.mailing_lists):
... print(fqdn_listname)
test@example.com
test_3@example.com
test_4@example.com

>>> for list_name, mail_host in sorted(list_manager.name_components):
... print(list_name, '@', mail_host)
test @ example.com
test_3 @ example.com
test_4 @ example.com

Mailing lists

The mailing list is a core object in Mailman. It is uniquely identified in
the system by its list-id which is derived from its posting address,
i.e. the email address you would send a message to in order to post a message
to the mailing list. The list id is defined in RFC 2369 [http://www.faqs.org/rfcs/rfc2369.html].

>>> mlist = create_list('aardvark@example.com')
>>> print(mlist.list_id)
aardvark.example.com
>>> print(mlist.fqdn_listname)
aardvark@example.com

The mailing list also has convenient attributes for accessing the list’s short
name (i.e. local part) and host name.

>>> print(mlist.list_name)
aardvark
>>> print(mlist.mail_host)
example.com

Rosters

Mailing list membership is represented by rosters. Each mailing list has
several rosters of members, representing the subscribers to the mailing list,
the owners, the moderators, and so on. The rosters are defined by a
membership role.

Addresses can be explicitly subscribed to a mailing list. By default, a
subscription puts the address in the member role, meaning that address will
receive a copy of any message sent to the mailing list.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> aperson = user_manager.create_address('aperson@example.com')
>>> bperson = user_manager.create_address('bperson@example.com')
>>> mlist.subscribe(aperson)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
>>> mlist.subscribe(bperson)
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>

Both addresses appear on the roster of members.

>>> from operator import attrgetter
>>> sort_key = attrgetter('address.email')

>>> for member in sorted(mlist.members.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>

By explicitly specifying the role of the subscription, an address can be added
to the owner and moderator rosters.

>>> from mailman.interfaces.member import MemberRole
>>> mlist.subscribe(aperson, MemberRole.owner)
<Member: aperson@example.com on aardvark@example.com as MemberRole.owner>
>>> cperson = user_manager.create_address('cperson@example.com')
>>> mlist.subscribe(cperson, MemberRole.owner)
<Member: cperson@example.com on aardvark@example.com as MemberRole.owner>
>>> mlist.subscribe(cperson, MemberRole.moderator)
<Member: cperson@example.com on aardvark@example.com
 as MemberRole.moderator>

A Person is now both a member and an owner of the mailing list. C Person is
an owner and a moderator.

>>> for member in sorted(mlist.owners.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.owner>
<Member: cperson@example.com on aardvark@example.com as MemberRole.owner>

>>> for member in mlist.moderators.members:
... print(member)
<Member: cperson@example.com on aardvark@example.com
 as MemberRole.moderator>

All rosters can also be accessed indirectly.

>>> roster = mlist.get_roster(MemberRole.member)
>>> for member in sorted(roster.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>

>>> roster = mlist.get_roster(MemberRole.owner)
>>> for member in sorted(roster.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.owner>
<Member: cperson@example.com on aardvark@example.com as MemberRole.owner>

>>> roster = mlist.get_roster(MemberRole.moderator)
>>> for member in roster.members:
... print(member)
<Member: cperson@example.com on aardvark@example.com
 as MemberRole.moderator>

Subscribing users

An alternative way of subscribing to a mailing list is as a user with a
preferred address. This way the user can change their subscription address
just by changing their preferred address.

The user must have a preferred address.

>>> from mailman.utilities.datetime import now
>>> user = user_manager.create_user('dperson@example.com', 'Dave Person')
>>> address = list(user.addresses)[0]
>>> address.verified_on = now()
>>> user.preferred_address = address

The preferred address is used in the subscription.

>>> mlist.subscribe(user)
<Member: Dave Person <dperson@example.com> on aardvark@example.com
 as MemberRole.member>
>>> for member in sorted(mlist.members.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>
<Member: Dave Person <dperson@example.com> on aardvark@example.com
 as MemberRole.member>

If the user’s preferred address changes, their subscribed email address also
changes automatically.

>>> new_address = user.register('dave.person@example.com')
>>> new_address.verified_on = now()
>>> user.preferred_address = new_address

>>> for member in sorted(mlist.members.members, key=sort_key):
... print(member)
<Member: aperson@example.com on aardvark@example.com as MemberRole.member>
<Member: bperson@example.com on aardvark@example.com as MemberRole.member>
<Member: dave.person@example.com on aardvark@example.com
 as MemberRole.member>

A user is allowed to explicitly subscribe again with a specific address, even
if this address is their preferred address.

>>> mlist.subscribe(user.preferred_address)
<Member: dave.person@example.com
 on aardvark@example.com as MemberRole.member>

List memberships

Users represent people in Mailman, members represent subscriptions. Users
control email addresses, and rosters are collections of members. A member
ties a subscribed email address to a role, such as member, administrator,
or moderator. Even non-members are represented by a roster.

Roster sets are collections of rosters and a mailing list has a single roster
set that contains all its members, regardless of that member’s role.

Mailing lists and roster sets have an indirect relationship, through the
roster set’s name. Roster also have names, but are related to roster sets
by a more direct containment relationship. This is because it is possible to
store mailing list data in a different database than user data.

When we create a mailing list, it starts out with no members, owners,
moderators, administrators, or nonmembers.

>>> mlist = create_list('ant@example.com')
>>> dump_list(mlist.members.members)
Empty
>>> dump_list(mlist.owners.members)
Empty
>>> dump_list(mlist.moderators.members)
Empty
>>> dump_list(mlist.administrators.members)
Empty
>>> dump_list(mlist.nonmembers.members)
Empty

Administrators

A mailing list’s administrators are defined as union of the list’s owners and
moderators. We can add new owners or moderators to this list by assigning
roles to users. First we have to create the user, because there are no users
in the user database yet.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)
>>> user_1 = user_manager.create_user('aperson@example.com', 'Anne Person')
>>> print(user_1)
<User "Anne Person" (...) at ...>

We can add Anne as an owner of the mailing list, by creating a member role for
her.

>>> from mailman.interfaces.member import MemberRole
>>> address_1 = list(user_1.addresses)[0]
>>> mlist.subscribe(address_1, MemberRole.owner)
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.owner>
>>> dump_list(member.address for member in mlist.owners.members)
Anne Person <aperson@example.com>

Adding Anne as a list owner also makes her an administrator, but does not make
her a moderator. Nor does it make her a member of the list.

>>> dump_list(member.address for member in mlist.administrators.members)
Anne Person <aperson@example.com>
>>> dump_list(member.address for member in mlist.moderators.members)
Empty
>>> dump_list(member.address for member in mlist.members.members)
Empty

Bart becomes a moderator of the list.

>>> user_2 = user_manager.create_user('bperson@example.com', 'Bart Person')
>>> print(user_2)
<User "Bart Person" (...) at ...>
>>> address_2 = list(user_2.addresses)[0]
>>> mlist.subscribe(address_2, MemberRole.moderator)
<Member: Bart Person <bperson@example.com>
 on ant@example.com as MemberRole.moderator>
>>> dump_list(member.address for member in mlist.moderators.members)
Bart Person <bperson@example.com>

Now, both Anne and Bart are list administrators.

>>> from operator import attrgetter
>>> def dump_members(roster):
... all_addresses = list(member.address for member in roster)
... sorted_addresses = sorted(all_addresses, key=attrgetter('email'))
... dump_list(sorted_addresses)

>>> dump_members(mlist.administrators.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>

Members

Similarly, list members are born of users being subscribed with the proper
role.

>>> user_3 = user_manager.create_user(
... 'cperson@example.com', 'Cris Person')
>>> address_3 = list(user_3.addresses)[0]
>>> member = mlist.subscribe(address_3, MemberRole.member)
>>> member
<Member: Cris Person <cperson@example.com>
 on ant@example.com as MemberRole.member>

Cris’s user record can also be retrieved from her member record.

>>> member.user
<User "Cris Person" (3) at ...>

Cris will be a regular delivery member but not a digest member.

>>> dump_members(mlist.members.members)
Cris Person <cperson@example.com>
>>> dump_members(mlist.regular_members.members)
Cris Person <cperson@example.com>
>>> dump_members(mlist.digest_members.addresses)
Empty

It’s easy to make the list administrators members of the mailing list too.

>>> members = []
>>> for address in mlist.administrators.addresses:
... member = mlist.subscribe(address, MemberRole.member)
... members.append(member)
>>> dump_list(members, key=attrgetter('address.email'))
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.member>
<Member: Bart Person <bperson@example.com> on
 ant@example.com as MemberRole.member>
>>> dump_members(mlist.members.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>
Cris Person <cperson@example.com>
>>> dump_members(mlist.regular_members.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>
Cris Person <cperson@example.com>
>>> dump_members(mlist.digest_members.members)
Empty

Nonmembers

Nonmembers are used to represent people who have posted to the mailing list
but are not subscribed to the mailing list. These may be legitimate users who
have found the mailing list and wish to interact without a direct
subscription, or they may be spammers who should never be allowed to contact
the mailing list. Because all the same moderation rules can be applied to
nonmembers, we represent them as the same type of object but with a different
role.

>>> user_6 = user_manager.create_user('fperson@example.com', 'Fred Person')
>>> address_6 = list(user_6.addresses)[0]
>>> member_6 = mlist.subscribe(address_6, MemberRole.nonmember)
>>> member_6
<Member: Fred Person <fperson@example.com> on ant@example.com
 as MemberRole.nonmember>
>>> dump_members(mlist.nonmembers.members)
Fred Person <fperson@example.com>

Nonmembers do not get delivery of any messages.

>>> dump_members(mlist.members.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>
Cris Person <cperson@example.com>
>>> dump_members(mlist.regular_members.members)
Anne Person <aperson@example.com>
Bart Person <bperson@example.com>
Cris Person <cperson@example.com>
>>> dump_members(mlist.digest_members.members)
Empty

Finding members

You can find the IMember object that is a member of a roster for a given
text email address by using the IRoster.get_member() method.

>>> mlist.owners.get_member('aperson@example.com')
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.owner>
>>> mlist.administrators.get_member('aperson@example.com')
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.owner>
>>> mlist.members.get_member('aperson@example.com')
<Member: Anne Person <aperson@example.com> on
 ant@example.com as MemberRole.member>
>>> mlist.nonmembers.get_member('fperson@example.com')
<Member: Fred Person <fperson@example.com> on
 ant@example.com as MemberRole.nonmember>

However, if the address is not subscribed with the appropriate role, then None
is returned.

>>> print(mlist.administrators.get_member('zperson@example.com'))
None
>>> print(mlist.moderators.get_member('aperson@example.com'))
None
>>> print(mlist.members.get_member('zperson@example.com'))
None
>>> print(mlist.nonmembers.get_member('aperson@example.com'))
None

All subscribers

There is also a roster containing all the subscribers of a mailing list,
regardless of their role.

>>> def sortkey(member):
... return (member.address.email, member.role.value)
>>> for member in sorted(mlist.subscribers.members, key=sortkey):
... print(member.address.email, member.role)
aperson@example.com MemberRole.member
aperson@example.com MemberRole.owner
bperson@example.com MemberRole.member
bperson@example.com MemberRole.moderator
cperson@example.com MemberRole.member
fperson@example.com MemberRole.nonmember

Subscriber type

Members can be subscribed to a mailing list either via an explicit address, or
indirectly through a user’s preferred address. Sometimes you want to know
which one it is.

Herb subscribes to the mailing list via an explicit address.

>>> herb = user_manager.create_address(
... 'hperson@example.com', 'Herb Person')
>>> herb_member = mlist.subscribe(herb)

Iris subscribes to the mailing list via her preferred address.

>>> iris = user_manager.make_user(
... 'iperson@example.com', 'Iris Person')
>>> preferred = list(iris.addresses)[0]
>>> from mailman.utilities.datetime import now
>>> preferred.verified_on = now()
>>> iris.preferred_address = preferred
>>> iris_member = mlist.subscribe(iris)

When we need to know which way a member is subscribed, we can look at the this
attribute.

>>> herb_member.subscriber
<Address: Herb Person <hperson@example.com> [not verified] at ...>
>>> iris_member.subscriber
<User "Iris Person" (5) at ...>

Moderation actions

All members of any role have a moderation action which specifies how
postings from that member are handled. By default, owners and moderators are
automatically accepted for posting to the mailing list.

>>> for member in sorted(mlist.administrators.members,
... key=attrgetter('address.email')):
... print(member.address.email, member.role, member.moderation_action)
aperson@example.com MemberRole.owner Action.accept
bperson@example.com MemberRole.moderator Action.accept

By default, members have a deferred action which specifies that the posting
should go through the normal moderation checks.

>>> for member in sorted(mlist.members.members,
... key=attrgetter('address.email')):
... print(member.address.email, member.role, member.moderation_action)
aperson@example.com MemberRole.member Action.defer
bperson@example.com MemberRole.member Action.defer
cperson@example.com MemberRole.member Action.defer
hperson@example.com MemberRole.member Action.defer
iperson@example.com MemberRole.member Action.defer

Postings by nonmembers are held for moderator approval by default.

>>> for member in mlist.nonmembers.members:
... print(member.address.email, member.role, member.moderation_action)
fperson@example.com MemberRole.nonmember Action.hold

Changing subscriptions

When a user is subscribed to a mailing list via a specific address they
control (as opposed to being subscribed with their preferred address), they
can change their delivery address by setting the appropriate parameter. Note
though that the address they’re changing to must be verified.

>>> bee = create_list('bee@example.com')
>>> gwen = user_manager.create_user('gwen@example.com')
>>> gwen_address = list(gwen.addresses)[0]
>>> gwen_member = bee.subscribe(gwen_address)
>>> for m in bee.members.members:
... print(m.member_id.int, m.mailing_list.list_id, m.address.email)
9 bee.example.com gwen@example.com

Gwen gets a email address.

>>> new_address = gwen.register('gperson@example.com')

Gwen verifies her email address, and updates her membership.

>>> from mailman.utilities.datetime import now
>>> new_address.verified_on = now()
>>> gwen_member.address = new_address

Now her membership reflects the new address.

>>> for m in bee.members.members:
... print(m.member_id.int, m.mailing_list.list_id, m.address.email)
9 bee.example.com gperson@example.com

Events

An event is triggered when a new member is subscribed to a mailing list.

>>> from mailman.testing.helpers import event_subscribers
>>> def handle_event(event):
... print(event)

>>> cat = create_list('cat@example.com')
>>> herb = user_manager.create_address('herb@example.com')
>>> with event_subscribers(handle_event):
... member = cat.subscribe(herb)
herb@example.com joined cat.example.com

An event is triggered when a member is unsubscribed from a mailing list.

>>> with event_subscribers(handle_event):
... member.unsubscribe()
herb@example.com left cat.example.com

The message store

The message store is a collection of messages keyed off of Message-ID and
X-Message-ID-Hash headers. Either of these values can be combined with
the message’s List-Archive header to create a globally unique URI to the
message object in the internet facing interface of the message store. The
X-Message-ID-Hash is the base-32 SHA1 hash of the Message-ID.

>>> from mailman.interfaces.messages import IMessageStore
>>> from zope.component import getUtility
>>> message_store = getUtility(IMessageStore)

A message with a Message-ID header can be stored.

>>> msg = message_from_string("""\
... Subject: An important message
... Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
...
... This message is very important.
... """)
>>> x_message_id_hash = message_store.add(msg)
>>> print(x_message_id_hash)
AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
>>> print(msg.as_string())
Subject: An important message
Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
X-Message-ID-Hash: AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
<BLANKLINE>
This message is very important.
<BLANKLINE>

Finding messages

There are several ways to find a message given either the Message-ID or
X-Message-ID-Hash headers. In either case, if no matching message is
found, None is returned.

>>> print(message_store.get_message_by_id('nothing'))
None
>>> print(message_store.get_message_by_hash('nothing'))
None

Given an existing Message-ID, the message can be found.

>>> message = message_store.get_message_by_id(msg['message-id'])
>>> print(message.as_string())
Subject: An important message
Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
X-Message-ID-Hash: AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
<BLANKLINE>
This message is very important.
<BLANKLINE>

Similarly, we can find messages by the X-Message-ID-Hash:

>>> message = message_store.get_message_by_hash(msg['x-message-id-hash'])
>>> print(message.as_string())
Subject: An important message
Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
X-Message-ID-Hash: AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
<BLANKLINE>
This message is very important.
<BLANKLINE>

Iterating over all messages

The message store provides a means to iterate over all the messages it
contains.

>>> messages = list(message_store.messages)
>>> len(messages)
1
>>> print(messages[0].as_string())
Subject: An important message
Message-ID: <87myycy5eh.fsf@uwakimon.sk.tsukuba.ac.jp>
X-Message-ID-Hash: AGDWSNXXKCWEILKKNYTBOHRDQGOX3Y35
<BLANKLINE>
This message is very important.
<BLANKLINE>

Deleting messages from the store

You delete a message from the storage service by providing the Message-ID
for the message you want to delete.

>>> message_id = message['message-id']
>>> message_store.delete_message(message_id)
>>> list(message_store.messages)
[]
>>> print(message_store.get_message_by_id(message_id))
None
>>> print(message_store.get_message_by_hash(message['x-message-id-hash']))
None

Mailing list addresses

Every mailing list has a number of addresses which are publicly available.
These are defined in the IMailingListAddresses interface.

>>> mlist = create_list('_xtest@example.com')

The posting address is where people send messages to be posted to the mailing
list. This is exactly the same as the fully qualified list name.

>>> print(mlist.fqdn_listname)
_xtest@example.com
>>> print(mlist.posting_address)
_xtest@example.com

Messages to the mailing list’s no reply address always get discarded without
prejudice.

>>> print(mlist.no_reply_address)
noreply@example.com

The mailing list’s owner address reaches the human moderators.

>>> print(mlist.owner_address)
_xtest-owner@example.com

The request address goes to the list’s email command robot.

>>> print(mlist.request_address)
_xtest-request@example.com

The bounces address accepts and processes all potential bounces.

>>> print(mlist.bounces_address)
_xtest-bounces@example.com

The join (a.k.a. subscribe) address is where someone can email to get added to
the mailing list. The subscribe alias is a synonym for join, but it’s
deprecated.

>>> print(mlist.join_address)
_xtest-join@example.com
>>> print(mlist.subscribe_address)
_xtest-subscribe@example.com

The leave (a.k.a. unsubscribe) address is where someone can email to get added
to the mailing list. The unsubscribe alias is a synonym for leave, but it’s
deprecated.

>>> print(mlist.leave_address)
_xtest-leave@example.com
>>> print(mlist.unsubscribe_address)
_xtest-unsubscribe@example.com

Email confirmations

Email confirmation messages are sent when actions such as subscriptions need
to be confirmed. It requires that a cookie be provided, which will be
included in the local part of the email address. The exact format of this is
dependent on the verp_confirm_format configuration variable.

>>> print(mlist.confirm_address('cookie'))
_xtest-confirm+cookie@example.com
>>> print(mlist.confirm_address('wookie'))
_xtest-confirm+wookie@example.com

>>> config.push('test config', """
... [mta]
... verp_confirm_format: $address---$cookie
... """)
>>> print(mlist.confirm_address('cookie'))
_xtest-confirm---cookie@example.com
>>> config.pop('test config')

The pending database

The pending database is where various types of events which need confirmation
are stored. These can include email address registration events, held
messages (but only for user confirmation), auto-approvals, and probe bounces.
This is not where messages held for administrator approval are kept.

In order to pend an event, you first need a pending database.

>>> from mailman.interfaces.pending import IPendings
>>> from zope.component import getUtility
>>> pendingdb = getUtility(IPendings)

There are nothing in the pendings database.

>>> pendingdb.count
0

The pending database can add any IPendable to the database, returning a
token that can be used in urls and such.

>>> from zope.interface import implementer
>>> from mailman.interfaces.pending import IPendable
>>> @implementer(IPendable)
... class SimplePendable(dict):
... pass

>>> subscription = SimplePendable(
... type='subscription',
... address='aperson@example.com',
... display_name='Anne Person',
... language='en',
... password='xyz')
>>> token = pendingdb.add(subscription)
>>> len(token)
40

There’s exactly one entry in the pendings database now.

>>> pendingdb.count
1

You can confirm the pending, which means returning the IPendable structure
(as a dictionary) from the database that matches the token. If the token
isn’t in the database, None is returned.

>>> pendable = pendingdb.confirm(b'missing')
>>> print(pendable)
None
>>> pendable = pendingdb.confirm(token)
>>> dump_msgdata(pendable)
address : aperson@example.com
display_name: Anne Person
language : en
password : xyz
type : subscription

After confirmation, the token is no longer in the database.

>>> print(pendingdb.confirm(token))
None

There are a few other things you can do with the pending database. When you
confirm a token, you can leave it in the database, or in other words, not
expunge it.

>>> event_1 = SimplePendable(type='one')
>>> token_1 = pendingdb.add(event_1)
>>> event_2 = SimplePendable(type='two')
>>> token_2 = pendingdb.add(event_2)
>>> event_3 = SimplePendable(type='three')
>>> token_3 = pendingdb.add(event_3)
>>> pendable = pendingdb.confirm(token_1, expunge=False)
>>> dump_msgdata(pendable)
type: one
>>> pendable = pendingdb.confirm(token_1, expunge=True)
>>> dump_msgdata(pendable)
type: one
>>> print(pendingdb.confirm(token_1))
None

You can iterate over all the pendings in the database.

>>> pendables = list(pendingdb)
>>> def sort_key(item):
... token, pendable = item
... return pendable['type']
>>> sorted_pendables = sorted(pendables, key=sort_key)
>>> for token, pendable in sorted_pendables:
... print(pendable['type'])
three
two

An event can be given a lifetime when it is pended, otherwise it just uses a
default lifetime.

>>> from datetime import timedelta
>>> yesterday = timedelta(days=-1)
>>> event_4 = SimplePendable(type='four')
>>> token_4 = pendingdb.add(event_4, lifetime=yesterday)

Every once in a while the pending database is cleared of old records.

>>> pendingdb.evict()
>>> print(pendingdb.confirm(token_4))
None
>>> pendable = pendingdb.confirm(token_2)
>>> dump_msgdata(pendable)
type: two

Registration

When a user wants to join a mailing list, they must register and verify their
email address. Then depending on how the mailing list is configured, they may
need to confirm their subscription and have it approved by the list
moderator. The IRegistrar interface manages this work flow.

>>> from mailman.interfaces.registrar import IRegistrar

Registrars adapt mailing lists.

>>> from mailman.interfaces.mailinglist import SubscriptionPolicy
>>> mlist = create_list('ant@example.com')
>>> mlist.send_welcome_message = False
>>> mlist.subscription_policy = SubscriptionPolicy.open
>>> registrar = IRegistrar(mlist)

Usually, addresses are registered, but users with preferred addresses can be
registered too.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> anne = getUtility(IUserManager).create_address(
... 'anne@example.com', 'Anne Person')

Register an email address

When the registration steps involve confirmation or moderator approval, the
process will pause until these steps are completed. A unique token is created
which represents this work flow.

Anne attempts to join the mailing list.

>>> token, token_owner, member = registrar.register(anne)

Because her email address has not yet been verified, she has not yet become a
member of the mailing list.

>>> print(member)
None
>>> print(mlist.members.get_member('anne@example.com'))
None

Once she verifies her email address, she will become a member of the mailing
list. In this case, verifying implies that she also confirms her wish to join
the mailing list.

>>> token, token_owner, member = registrar.confirm(token)
>>> member
<Member: Anne Person <anne@example.com> on ant@example.com
 as MemberRole.member>
>>> mlist.members.get_member('anne@example.com')
<Member: Anne Person <anne@example.com> on ant@example.com
 as MemberRole.member>

Register a user

Users can also register, but they must have a preferred address. The mailing
list will deliver messages to this preferred address.

>>> bart = getUtility(IUserManager).make_user(
... 'bart@example.com', 'Bart Person')

Bart verifies his address and makes it his preferred address.

>>> from mailman.utilities.datetime import now
>>> preferred = list(bart.addresses)[0]
>>> preferred.verified_on = now()
>>> bart.preferred_address = preferred

The mailing list’s subscription policy does not require Bart to confirm his
subscription, but the moderate does want to approve all subscriptions.

>>> mlist.subscription_policy = SubscriptionPolicy.moderate

Now when Bart registers as a user for the mailing list, a token will still be
generated, but this is only used by the moderator. At first, Bart is not
subscribed to the mailing list.

>>> token, token_owner, member = registrar.register(bart)
>>> print(member)
None
>>> print(mlist.members.get_member('bart@example.com'))
None

When the moderator confirms Bart’s subscription, he joins the mailing list.

>>> token, token_owner, member = registrar.confirm(token)
>>> member
<Member: Bart Person <bart@example.com> on ant@example.com
 as MemberRole.member>
>>> mlist.members.get_member('bart@example.com')
<Member: Bart Person <bart@example.com> on ant@example.com
 as MemberRole.member>

Moderator requests

Various actions will be held for moderator approval, such as subscriptions to
closed lists, or postings by non-members. The requests database is the low
level interface to these actions requiring approval.

An application level interface for holding messages and
membership changes is also available.

Mailing list-centric

A set of requests are always related to a particular mailing list. Adapt the
mailing list to get its requests.

>>> from mailman.interfaces.requests import IListRequests
>>> from zope.interface.verify import verifyObject

>>> mlist = create_list('test@example.com')
>>> requests = IListRequests(mlist)
>>> verifyObject(IListRequests, requests)
True
>>> requests.mailing_list
<mailing list "test@example.com" at ...>

Holding requests

The list’s requests database starts out empty.

>>> print(requests.count)
0
>>> dump_list(requests.held_requests)
Empty

At the lowest level, the requests database is very simple. Holding a request
requires a request type (as an enum value), a key, and an optional dictionary
of associated data. The request database assigns no semantics to the held
data, except for the request type.

>>> from mailman.interfaces.requests import RequestType

We can hold messages for moderator approval.

>>> requests.hold_request(RequestType.held_message, 'hold_1')
1

We can hold subscription requests for moderator approval.

>>> requests.hold_request(RequestType.subscription, 'hold_2')
2

We can hold unsubscription requests for moderator approval.

>>> requests.hold_request(RequestType.unsubscription, 'hold_3')
3

Getting requests

We can see the total number of requests being held.

>>> print(requests.count)
3

We can also see the number of requests being held by request type.

>>> print(requests.count_of(RequestType.subscription))
1
>>> print(requests.count_of(RequestType.unsubscription))
1

We can also see when there are multiple held requests of a particular type.

>>> print(requests.hold_request(RequestType.held_message, 'hold_4'))
4
>>> print(requests.count_of(RequestType.held_message))
2

We can ask the requests database for a specific request, by providing the id
of the request data we want. This returns a 2-tuple of the key and data we
originally held.

>>> key, data = requests.get_request(2)
>>> print(key)
hold_2

There was no additional data associated with request 2.

>>> print(data)
None

If we ask for a request that is not in the database, we get None back.

>>> print(requests.get_request(801))
None

Additional data

When a request is held, additional data can be associated with it, in the form
of a dictionary with string values.

>>> data = dict(foo='yes', bar='no')
>>> requests.hold_request(RequestType.held_message, 'hold_5', data)
5

The data is returned when the request is retrieved. The dictionary will have
an additional key which holds the name of the request type.

>>> key, data = requests.get_request(5)
>>> print(key)
hold_5
>>> dump_msgdata(data)
_request_type: held_message
bar : no
foo : yes

Iterating over requests

To make it easier to find specific requests, the list requests can be iterated
over by type.

>>> print(requests.count_of(RequestType.held_message))
3
>>> for request in requests.of_type(RequestType.held_message):
... key, data = requests.get_request(request.id)
... print(request.id, request.request_type, key)
... if data is not None:
... for key in sorted(data):
... print(' {0}: {1}'.format(key, data[key]))
1 RequestType.held_message hold_1
4 RequestType.held_message hold_4
5 RequestType.held_message hold_5
 _request_type: held_message
 bar: no
 foo: yes

Deleting requests

Once a specific request has been handled, it can be deleted from the requests
database.

>>> print(requests.count)
5
>>> requests.delete_request(2)
>>> print(requests.count)
4

Request 2 is no longer in the database.

>>> print(requests.get_request(2))
None

>>> for request in requests.held_requests:
... requests.delete_request(request.id)
>>> print(requests.count)
0

The user manager

The IUserManager is how you create, delete, and manage users.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

Creating users

There are several ways you can create a user object. The simplest is to
create a blank user by not providing an address or real name at creation
time. This user will have an empty string as their real name, but will not
have a password.

>>> from mailman.interfaces.user import IUser
>>> from zope.interface.verify import verifyObject
>>> user = user_manager.create_user()
>>> verifyObject(IUser, user)
True

>>> dump_list(address.email for address in user.addresses)
Empty
>>> print(user.display_name)

>>> print(user.password)
None

The user has preferences, but none of them will be specified.

>>> print(user.preferences)
<Preferences ...>

A user can be assigned a real name.

>>> user.display_name = 'Anne Person'
>>> dump_list(user.display_name for user in user_manager.users)
Anne Person

A user can be assigned a password.

>>> user.password = 'secret'
>>> dump_list(user.password for user in user_manager.users)
secret

You can also create a user with an address to start out with.

>>> user_2 = user_manager.create_user('bperson@example.com')
>>> verifyObject(IUser, user_2)
True
>>> dump_list(address.email for address in user_2.addresses)
bperson@example.com
>>> dump_list(user.display_name for user in user_manager.users)
<BLANKLINE>
Anne Person

As above, you can assign a real name to such users.

>>> user_2.display_name = 'Ben Person'
>>> dump_list(user.display_name for user in user_manager.users)
Anne Person
Ben Person

You can also create a user with just a real name.

>>> user_3 = user_manager.create_user(display_name='Claire Person')
>>> verifyObject(IUser, user_3)
True
>>> dump_list(address.email for address in user.addresses)
Empty
>>> dump_list(user.display_name for user in user_manager.users)
Anne Person
Ben Person
Claire Person

Finally, you can create a user with both an address and a real name.

>>> user_4 = user_manager.create_user('dperson@example.com', 'Dan Person')
>>> verifyObject(IUser, user_3)
True
>>> dump_list(address.email for address in user_4.addresses)
dperson@example.com
>>> dump_list(address.display_name for address in user_4.addresses)
Dan Person
>>> dump_list(user.display_name for user in user_manager.users)
Anne Person
Ben Person
Claire Person
Dan Person

Deleting users

You delete users by going through the user manager. The deleted user is no
longer available through the user manager iterator.

>>> user_manager.delete_user(user)
>>> dump_list(user.display_name for user in user_manager.users)
Ben Person
Claire Person
Dan Person

Finding users

You can ask the user manager to find the IUser that controls a particular
email address. You’ll get back the original user object if it’s found. Note
that the .get_user() method takes a string email address, not an
IAddress object.

>>> address = list(user_4.addresses)[0]
>>> found_user = user_manager.get_user(address.email)
>>> found_user
<User "Dan Person" (...) at ...>
>>> found_user is user_4
True

If the address is not in the user database or does not have a user associated
with it, you will get None back.

>>> print(user_manager.get_user('zperson@example.com'))
None
>>> user_4.unlink(address)
>>> print(user_manager.get_user(address.email))
None

Users can also be found by their unique user id.

>>> found_user = user_manager.get_user_by_id(user_4.user_id)
>>> user_4
<User "Dan Person" (...) at ...>
>>> found_user
<User "Dan Person" (...) at ...>
>>> user_4.user_id == found_user.user_id
True

If a non-existent user id is given, None is returned.

>>> from uuid import UUID
>>> print(user_manager.get_user_by_id(UUID(int=801)))
None

Finding all members

The user manager can return all the members known to the system.

>>> mlist = create_list('test@example.com')
>>> mlist.subscribe(list(user_2.addresses)[0])
<Member: bperson@example.com on test@example.com as MemberRole.member>
>>> mlist.subscribe(user_manager.create_address('eperson@example.com'))
<Member: eperson@example.com on test@example.com as MemberRole.member>
>>> mlist.subscribe(user_manager.create_address('fperson@example.com'))
<Member: fperson@example.com on test@example.com as MemberRole.member>

Bart is also the owner of the mailing list.

>>> from mailman.interfaces.member import MemberRole
>>> mlist.subscribe(list(user_2.addresses)[0], MemberRole.owner)
<Member: bperson@example.com on test@example.com as MemberRole.owner>

There are now four members in the system. Sort them by address then role.

>>> def sort_key(member):
... return (member.address.email, member.role.name)
>>> members = sorted(user_manager.members, key=sort_key)
>>> for member in members:
... print(member.mailing_list.list_id, member.address.email,
... member.role)
test.example.com bperson@example.com MemberRole.member
test.example.com bperson@example.com MemberRole.owner
test.example.com eperson@example.com MemberRole.member
test.example.com fperson@example.com MemberRole.member

Creating a new user

A common situation (especially during the subscription life cycle) is to
create a user linked to an address, with a preferred address. Say for
example, we are asked to subscribe a new address we have never seen before.

>>> cris = user_manager.make_user('cris@example.com', 'Cris Person')

Since we’ve never seen cris@example.com before, this call creates a new
user with the given email and display name.

>>> cris
<User "Cris Person" (5) at ...>

The user has a single unverified address object.

>>> for address in cris.addresses:
... print(repr(address))
<Address: Cris Person <cris@example.com> [not verified] at ...>

Users

Users are entities that represent people. A user has a real name and a
optional encoded password. A user may also have an optional preferences and a
set of addresses they control. They can even have a preferred address,
i.e. one that they use by default.

See usermanager.txt for examples of how to create, delete, and find users.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

User data

Users may have a real name and a password.

>>> user_1 = user_manager.create_user()
>>> user_1.password = 'my password'
>>> user_1.display_name = 'Zoe Person'
>>> dump_list(user.display_name for user in user_manager.users)
Zoe Person
>>> dump_list(user.password for user in user_manager.users)
my password

The password and real name can be changed at any time.

>>> user_1.display_name = 'Zoe X. Person'
>>> user_1.password = 'another password'
>>> dump_list(user.display_name for user in user_manager.users)
Zoe X. Person
>>> dump_list(user.password for user in user_manager.users)
another password

When the user’s password is changed, an event is triggered.

>>> saved_event = None
>>> def save_event(event):
... global saved_event
... saved_event = event
>>> from mailman.testing.helpers import event_subscribers
>>> with event_subscribers(save_event):
... user_1.password = 'changed again'
>>> print(saved_event)
<PasswordChangeEvent Zoe X. Person>

The event holds a reference to the IUser that changed their password.

>>> print(saved_event.user.display_name)
Zoe X. Person
>>> print(saved_event.user.password)
changed again

Basic user identification

Although rarely visible to users, every user has a unique immutable ID. This
ID is generated randomly at the time the user is created, and is represented
by a UUID.

>>> print(user_1.user_id)
00000000-0000-0000-0000-000000000001

User records also have a date on which they where created.

The test suite uses a predictable timestamp.
>>> print(user_1.created_on)
2005-08-01 07:49:23

Users addresses

One of the pieces of information that a user links to is a set of email
addresses they control, in the form of IAddress objects. A user can
control many addresses, but addresses may be linked to only one user.

The easiest way to link a user to an address is to just register the new
address on a user object.

>>> user_1.register('zperson@example.com', 'Zoe Person')
<Address: Zoe Person <zperson@example.com> [not verified] at 0x...>
>>> user_1.register('zperson@example.org')
<Address: zperson@example.org [not verified] at 0x...>
>>> dump_list(address.email for address in user_1.addresses)
zperson@example.com
zperson@example.org
>>> dump_list(address.display_name for address in user_1.addresses)
<BLANKLINE>
Zoe Person

You can also create the address separately and then link it to the user.

>>> address_1 = user_manager.create_address('zperson@example.net')
>>> user_1.link(address_1)
>>> dump_list(address.email for address in user_1.addresses)
zperson@example.com
zperson@example.net
zperson@example.org
>>> dump_list(address.display_name for address in user_1.addresses)
<BLANKLINE>
<BLANKLINE>
Zoe Person

You can also ask whether a given user controls a given address.

>>> user_1.controls(address_1.email)
True
>>> user_1.controls('bperson@example.com')
False

Given a text email address, the user manager can find the user that controls
that address.

>>> user_manager.get_user('zperson@example.com') is user_1
True
>>> user_manager.get_user('zperson@example.net') is user_1
True
>>> user_manager.get_user('zperson@example.org') is user_1
True
>>> print(user_manager.get_user('bperson@example.com'))
None

Addresses can also be unlinked from a user.

>>> user_1.unlink(address_1)
>>> user_1.controls('zperson@example.net')
False
>>> print(user_manager.get_user('aperson@example.net'))
None

Preferred address

Users can register a preferred address. When subscribing to a mailing list,
unless some other address is explicitly specified, the user will be subscribed
with their preferred address. This allows them to change their preferred
address once, and have all their subscriptions automatically track this
change.

By default, a user has no preferred address.

>>> user_2 = user_manager.create_user()
>>> print(user_2.preferred_address)
None

Even when a user registers an address, this address will not be set as the
preferred address.

>>> anne = user_2.register('anne@example.com', 'Anne Person')
>>> print(user_2.preferred_address)
None

Once the address has been verified, it can be set as the preferred address,
but only if the address is either controlled by the user or uncontrolled. In
the latter case, setting it as the preferred address makes it controlled by
the user.

>>> from mailman.utilities.datetime import now
>>> anne.verified_on = now()
>>> anne
<Address: Anne Person <anne@example.com> [verified] at ...>
>>> user_2.controls(anne.email)
True
>>> user_2.preferred_address = anne
>>> user_2.preferred_address
<Address: Anne Person <anne@example.com> [verified] at ...>

>>> aperson = user_manager.create_address('aperson@example.com')
>>> user_2.controls(aperson.email)
False
>>> aperson.verified_on = now()
>>> user_2.preferred_address = aperson
>>> user_2.controls(aperson.email)
True

A user can disavow their preferred address.

>>> user_2.preferred_address
<Address: aperson@example.com [verified] at ...>
>>> del user_2.preferred_address
>>> print(user_2.preferred_address)
None

The preferred address always shows up in the set of addresses controlled by
this user.

>>> from operator import attrgetter
>>> for address in sorted(user_2.addresses, key=attrgetter('email')):
... print(address.email)
anne@example.com
aperson@example.com

Users and preferences

This is a helper function for the following section.

>>> def show_prefs(prefs):
... print('acknowledge_posts :', prefs.acknowledge_posts)
... print('preferred_language :', prefs.preferred_language)
... print('receive_list_copy :', prefs.receive_list_copy)
... print('receive_own_postings :', prefs.receive_own_postings)
... print('delivery_mode :', prefs.delivery_mode)

Users have preferences, but these preferences have no default settings.

>>> from mailman.interfaces.preferences import IPreferences
>>> show_prefs(user_1.preferences)
acknowledge_posts : None
preferred_language : None
receive_list_copy : None
receive_own_postings : None
delivery_mode : None

Some of these preferences are booleans and they can be set to True or
False.

>>> from mailman.interfaces.languages import ILanguageManager
>>> getUtility(ILanguageManager).add('it', 'iso-8859-1', 'Italian')
<Language [it] Italian>

>>> from mailman.core.constants import DeliveryMode
>>> prefs = user_1.preferences
>>> prefs.acknowledge_posts = True
>>> prefs.preferred_language = 'it'
>>> prefs.receive_list_copy = False
>>> prefs.receive_own_postings = False
>>> prefs.delivery_mode = DeliveryMode.regular
>>> show_prefs(user_1.preferences)
acknowledge_posts : True
preferred_language : <Language [it] Italian>
receive_list_copy : False
receive_own_postings : False
delivery_mode : DeliveryMode.regular

Subscriptions

Users know which mailing lists they are subscribed to, regardless of
membership role.

>>> user_1.link(address_1)
>>> dump_list(address.email for address in user_1.addresses)
zperson@example.com
zperson@example.net
zperson@example.org
>>> com = user_manager.get_address('zperson@example.com')
>>> org = user_manager.get_address('zperson@example.org')
>>> net = user_manager.get_address('zperson@example.net')

>>> mlist_1 = create_list('xtest_1@example.com')
>>> mlist_2 = create_list('xtest_2@example.com')
>>> mlist_3 = create_list('xtest_3@example.com')
>>> from mailman.interfaces.member import MemberRole

>>> mlist_1.subscribe(com, MemberRole.member)
<Member: Zoe Person <zperson@example.com> on xtest_1@example.com as
 MemberRole.member>
>>> mlist_2.subscribe(org, MemberRole.member)
<Member: zperson@example.org on xtest_2@example.com as MemberRole.member>
>>> mlist_2.subscribe(org, MemberRole.owner)
<Member: zperson@example.org on xtest_2@example.com as MemberRole.owner>
>>> mlist_3.subscribe(net, MemberRole.moderator)
<Member: zperson@example.net on xtest_3@example.com as
 MemberRole.moderator>

>>> memberships = user_1.memberships
>>> from mailman.interfaces.roster import IRoster
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IRoster, memberships)
True
>>> def sortkey(member):
... return member.address.email, member.mailing_list, member.role.value
>>> members = sorted(memberships.members, key=sortkey)
>>> len(members)
4
>>> for member in sorted(members, key=sortkey):
... print(member.address.email, member.mailing_list.list_id,
... member.role)
zperson@example.com xtest_1.example.com MemberRole.member
zperson@example.net xtest_3.example.com MemberRole.moderator
zperson@example.org xtest_2.example.com MemberRole.member
zperson@example.org xtest_2.example.com MemberRole.owner

Server owners

Some users are server owners. Zoe is not yet a server owner.

>>> user_1.is_server_owner
False

So, let’s make her one.

>>> user_1.is_server_owner = True
>>> user_1.is_server_owner
True

SMTP authentication

The SMTP server may require authentication. Mailman supports setting the SMTP
user name and password. The actual authentication mechanism used is
determined by Python’s smtplib module [http://docs.python.org/library/smtplib.html], which tries the more secure
CRAM-MD5 method first, followed by the less secure mechanisms PLAIN and
LOGIN.

When sending authentication data between Mailman and the MTA over an unsecured
network, the submission (mail) server should offer CRAM-MD5 as mechanism to
have Python’s smtplib module automatically choose the more secure mechanism.

When the user name and password match what’s expected by the server,
everything is a-okay.

>>> mlist = create_list('test@example.com')

By default there is no user name and password, but this matches what’s
expected by the test server.

>>> config.push('auth', """
... [mta]
... smtp_user: testuser
... smtp_pass: testpass
... """)

Attempting delivery first must authorize with the mail server.

>>> from mailman.mta.bulk import BulkDelivery
>>> bulk = BulkDelivery()

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... First post!
... """)

>>> bulk.deliver(mlist, msg, dict(recipients=['bperson@example.com']))
{}

>>> print(smtpd.get_authentication_credentials())
PLAIN AHRlc3R1c2VyAHRlc3RwYXNz
>>> config.pop('auth')

But if the user name and password does not match, the connection will fail.

>>> config.push('auth', """
... [mta]
... smtp_user: baduser
... smtp_pass: badpass
... """)

>>> bulk = BulkDelivery()
>>> response = bulk.deliver(
... mlist, msg, dict(recipients=['bperson@example.com']))
>>> dump_msgdata(response)
bperson@example.com: (571, b'Bad authentication')

>>> config.pop('auth')

Standard bulk delivery

Mailman has several built in strategies for completing the actual delivery of
messages to the immediate upstream mail transport agent, which completes the
actual final delivery to recipients.

Bulk delivery attempts to deliver as few copies of the identical message as
possible to as many recipients as possible. By grouping recipients this way,
bandwidth between Mailman and the MTA, and consequently between the MTA and
remote mail servers, can be greatly reduced. The downside is the messages
cannot be personalized. See verp.txt for an alternative strategy.

>>> from mailman.mta.bulk import BulkDelivery

The standard bulk deliverer takes as an argument the maximum number of
recipients per session. The default is to deliver the message in one chunk,
containing all recipients.

>>> bulk = BulkDelivery()

Delivery strategies must implement the proper interface.

>>> from mailman.interfaces.mta import IMailTransportAgentDelivery
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IMailTransportAgentDelivery, bulk)
True

Chunking recipients

The set of final recipients is contained in the recipients key in the
message metadata. When max_recipients is specified as zero, then the bulk
deliverer puts all recipients into one big chunk.

>>> from string import ascii_letters
>>> recipients = set(letter + 'person@example.com'
... for letter in ascii_letters)

>>> chunks = list(bulk.chunkify(recipients))
>>> len(chunks)
1
>>> len(chunks[0])
52

Let say the maximum number of recipients allowed is 4, then no chunk will have
more than 4 recipients, though they can have fewer (but still not zero).

>>> bulk = BulkDelivery(4)
>>> chunks = list(bulk.chunkify(recipients))
>>> len(chunks)
13
>>> all(0 < len(chunk) <= 4 for chunk in chunks)
True

The chunking algorithm sorts recipients by top level domain by length.

>>> recipients = set([
... 'anne@example.com',
... 'bart@example.org',
... 'cate@example.net',
... 'dave@example.com',
... 'elle@example.org',
... 'fred@example.net',
... 'gwen@example.com',
... 'herb@example.us',
... 'ione@example.net',
... 'john@example.com',
... 'kate@example.com',
... 'liam@example.ca',
... 'mary@example.us',
... 'neil@example.net',
... 'ocho@example.org',
... 'paco@example.xx',
... 'quaq@example.zz',
...])

>>> bulk = BulkDelivery(4)
>>> chunks = list(bulk.chunkify(recipients))
>>> len(chunks)
6

We can’t make any guarantees about sorting within each chunk, but we can tell
a few things. For example, the first two chunks will be composed of .net
(4) and .org (3) domains (for a total of 7).

>>> len(chunks[0])
4
>>> len(chunks[1])
3

>>> for address in sorted(chunks[0].union(chunks[1])):
... print(address)
bart@example.org
cate@example.net
elle@example.org
fred@example.net
ione@example.net
neil@example.net
ocho@example.org

We also know that the next two chunks will contain .com (5) addresses.

>>> len(chunks[2])
4
>>> len(chunks[3])
1

>>> for address in sorted(chunks[2].union(chunks[3])):
... print(address)
anne@example.com
dave@example.com
gwen@example.com
john@example.com
kate@example.com

The next chunk will contain the .us (2) and .ca (1) domains.

>>> len(chunks[4])
3
>>> for address in sorted(chunks[4]):
... print(address)
herb@example.us
liam@example.ca
mary@example.us

The final chunk will contain the outliers, .xx (1) and .zz (2).

>>> len(chunks[5])
2
>>> for address in sorted(chunks[5]):
... print(address)
paco@example.xx
quaq@example.zz

Bulk delivery

The set of recipients for bulk delivery comes from the message metadata. If
there are no calculated recipients, nothing gets sent.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test one
... Message-ID: <aardvark>
...
... This is a test.
... """)

>>> bulk = BulkDelivery()
>>> bulk.deliver(mlist, msg, {})
{}
>>> len(list(smtpd.messages))
0

>>> bulk.deliver(mlist, msg, dict(recipients=set()))
{}
>>> len(list(smtpd.messages))
0

With bulk delivery and no maximum number of recipients, there will be just one
message sent, with all the recipients packed into the envelope recipients
(i.e. RCTP TO).

>>> recipients = set('person_{0:02d}'.format(i) for i in range(100))
>>> msgdata = dict(recipients=recipients)
>>> bulk.deliver(mlist, msg, msgdata)
{}

>>> messages = list(smtpd.messages)
>>> len(messages)
1
>>> print(messages[0].as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
...
X-RcptTo: person_...
 person_...
...

This is a test.

The X-RcptTo: header contains the set of recipients, in sorted order.

>>> len(messages[0]['x-rcptto'].split(','))
100

When the maximum number of recipients is set to 20, 5 messages will be sent,
each with 20 addresses in the RCPT TO.

>>> bulk = BulkDelivery(20)
>>> bulk.deliver(mlist, msg, msgdata)
{}

>>> messages = list(smtpd.messages)
>>> len(messages)
5
>>> for message in messages:
... x_rcptto = message['x-rcptto']
... print('Number of recipients:', len(x_rcptto.split(',')))
Number of recipients: 20
Number of recipients: 20
Number of recipients: 20
Number of recipients: 20
Number of recipients: 20

Delivery headers

The sending agent shows up in the RFC 5321 MAIL FROM, which shows up in
the X-MailFrom: header in the sample message.

The bulk delivery module calculates the sending agent address first from the
message metadata…

>>> bulk = BulkDelivery()
>>> recipients = set(['aperson@example.com'])
>>> msgdata = dict(recipients=recipients,
... sender='asender@example.org')
>>> bulk.deliver(mlist, msg, msgdata)
{}

>>> message = list(smtpd.messages)[0]
>>> print(message.as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: asender@example.org
X-RcptTo: aperson@example.com

This is a test.

…followed by the mailing list’s bounces robot address…

>>> del msgdata['sender']
>>> bulk.deliver(mlist, msg, msgdata)
{}

>>> message = list(smtpd.messages)[0]
>>> print(message.as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

…and finally the site owner, if there is no mailing list target for this
message.

>>> config.push('site-owner', """\
... [mailman]
... site_owner: site-owner@example.com
... """)

>>> bulk.deliver(None, msg, msgdata)
{}

>>> message = list(smtpd.messages)[0]
>>> print(message.as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: site-owner@example.com
X-RcptTo: aperson@example.com

This is a test.

Remove test configuration.
>>> config.pop('site-owner')

Delivery failures

Mailman does not do final delivery. Instead, it sends mail through a site
local mail server which manages queuing and final delivery. However, even
this local mail server can produce delivery failures visible to Mailman in
certain situations.

For example, there could be a problem delivering to any of the specified
recipients.

Tell the mail server to fail on the next 3 RCPT TO commands, one for
each recipient in the following message.
>>> smtpd.err_queue.put(('rcpt', 500))
>>> smtpd.err_queue.put(('rcpt', 500))
>>> smtpd.err_queue.put(('rcpt', 500))

>>> recipients = set([
... 'aperson@example.org',
... 'bperson@example.org',
... 'cperson@example.org',
...])
>>> msgdata = dict(recipients=recipients)

>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test three
... Message-ID: <camel>
...
... This is a test.
... """)

>>> failures = bulk.deliver(mlist, msg, msgdata)
>>> for address in sorted(failures):
... print(address, failures[address][0],
... failures[address][1].decode('ascii'))
aperson@example.org 500 Error: SMTPRecipientsRefused
bperson@example.org 500 Error: SMTPRecipientsRefused
cperson@example.org 500 Error: SMTPRecipientsRefused

>>> messages = list(smtpd.messages)
>>> len(messages)
0

Or there could be some other problem causing an SMTP response failure.

Tell the mail server to register a temporary failure on the next MAIL
FROM command.
>>> smtpd.err_queue.put(('mail', 450))

>>> failures = bulk.deliver(mlist, msg, msgdata)
>>> for address in sorted(failures):
... print(address, failures[address][0],
... failures[address][1].decode('ascii'))
aperson@example.org 450 Error: SMTPResponseException
bperson@example.org 450 Error: SMTPResponseException
cperson@example.org 450 Error: SMTPResponseException

Tell the mail server to register a permanent failure on the next MAIL
FROM command.
>>> smtpd.err_queue.put(('mail', 500))

>>> failures = bulk.deliver(mlist, msg, msgdata)
>>> for address in sorted(failures):
... print(address, failures[address][0],
... failures[address][1].decode('ascii'))
aperson@example.org 500 Error: SMTPResponseException
bperson@example.org 500 Error: SMTPResponseException
cperson@example.org 500 Error: SMTPResponseException

XXX Untested: socket.error, IOError, smtplib.SMTPException.

MTA connections

Outgoing connections to the outgoing mail transport agent (MTA) are mitigated
through a Connection class, which can transparently manage multiple
sessions in a single connection.

>>> from mailman.mta.connection import Connection

The number of sessions per connections is specified when the Connection
object is created, as is the host and port number of the SMTP server. Zero
means there’s an unlimited number of sessions per connection.

>>> connection = Connection(
... config.mta.smtp_host, int(config.mta.smtp_port), 0)

At the start, there have been no connections to the server.

>>> smtpd.get_connection_count()
0

By sending a message to the server, a connection is opened.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
1

We can reset the connection count back to zero.

>>> from smtplib import SMTP
>>> def reset():
... smtpd = SMTP()
... smtpd.connect(config.mta.smtp_host, int(config.mta.smtp_port))
... smtpd.docmd('RSET')

>>> reset()
>>> smtpd.get_connection_count()
0

>>> connection.quit()

By providing an SMTP user name and password in the configuration file, Mailman
will authenticate with the mail server after each new connection.

>>> config.push('auth', """
... [mta]
... smtp_user: testuser
... smtp_pass: testpass
... """)

>>> connection = Connection(
... config.mta.smtp_host, int(config.mta.smtp_port), 0,
... config.mta.smtp_user, config.mta.smtp_pass)
>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}
>>> print(smtpd.get_authentication_credentials())
PLAIN AHRlc3R1c2VyAHRlc3RwYXNz

>>> reset()
>>> config.pop('auth')

Sessions per connection

Let’s say we specify a maximum number of sessions per connection of 2. When
the third message is sent, the connection is torn down and a new one is
created.

The connection count starts at zero.

>>> connection = Connection(
... config.mta.smtp_host, int(config.mta.smtp_port), 2)

>>> smtpd.get_connection_count()
0

We send two messages through the Connection object. Only one connection
is opened.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
1

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
1

The third message would cause a third session, exceeding the maximum. So the
current connection is closed and a new one opened.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
2

A fourth message does not cause a new connection to be made.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
2

But a fifth one does.

>>> connection.sendmail('anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> smtpd.get_connection_count()
3

No maximum

A value of zero means that there is an unlimited number of sessions per
connection.

>>> connection = Connection(
... config.mta.smtp_host, int(config.mta.smtp_port), 0)
>>> reset()

Even after ten messages are sent, there’s still been only one connection to
the server.

>>> connection.debug = True
>>> for i in range(10):
... # Ignore the results.
... results = connection.sendmail(
... 'anne@example.com', ['bart@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)

>>> smtpd.get_connection_count()
1

Development mode

By putting Mailman into development mode, you can force the recipients to a
given hard-coded address. This allows you to test Mailman without worrying
about accidental deliveries to unintended recipients.

>>> config.push('devmode', """
... [devmode]
... enabled: yes
... recipient: zperson@example.com
... """)

>>> smtpd.clear()
>>> connection.sendmail(
... 'anne@example.com',
... ['bart@example.com', 'cate@example.com'], """\
... From: anne@example.com
... To: bart@example.com
... Subject: aardvarks
...
... """)
{}

>>> messages = list(smtpd.messages)
>>> len(messages)
1
>>> print(messages[0].as_string())
From: anne@example.com
To: bart@example.com
Subject: aardvarks
X-Peer: ...
X-MailFrom: anne@example.com
X-RcptTo: zperson@example.com, zperson@example.com

>>> config.pop('devmode')

Personalized decoration

Personalized messages can be decorated by headers and footers containing
information specific to the recipient.

>>> from mailman.mta.decorating import DecoratingDelivery
>>> decorating = DecoratingDelivery()

Delivery strategies must implement the proper interface.

>>> from mailman.interfaces.mta import IMailTransportAgentDelivery
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IMailTransportAgentDelivery, decorating)
True

Decorations

Decorations are added when the mailing list had a header and/or footer
defined, and the decoration handler is told to do personalized decorations.
We start by writing the site-global header and footer template.

>>> import os, tempfile
>>> template_dir = tempfile.mkdtemp()
>>> site_dir = os.path.join(template_dir, 'site', 'en')
>>> os.makedirs(site_dir)
>>> config.push('templates', """
... [paths.testing]
... template_dir: {0}
... """.format(template_dir))

>>> myheader_path = os.path.join(site_dir, 'myheader.txt')
>>> with open(myheader_path, 'w') as fp:
... print("""\
... Delivery address: $user_address
... Subscribed address: $user_delivered_to
... """, file=fp)
>>> myfooter_path = os.path.join(site_dir, 'myfooter.txt')
>>> with open(myfooter_path, 'w') as fp:
... print("""\
... User name: $user_name
... Language: $user_language
... Options: $user_optionsurl
... """, file=fp)

Then create a mailing list which will use this header and footer. Because
these are site-global templates, we can use a shorted URL.

>>> mlist = create_list('test@example.com')
>>> mlist.header_uri = 'mailman:///myheader.txt'
>>> mlist.footer_uri = 'mailman:///myfooter.txt'

>>> transaction.commit()

>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test one
... Message-ID: <aardvark>
...
... This is a test.
... """)

>>> recipients = set([
... 'aperson@example.com',
... 'bperson@example.com',
... 'cperson@example.com',
...])

>>> msgdata = dict(
... recipients=recipients,
... personalize=True,
...)

More information is included when the recipient is a member of the mailing
list.

>>> from zope.component import getUtility
>>> from mailman.interfaces.member import MemberRole
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)

>>> anne = user_manager.create_user('aperson@example.com', 'Anne Person')
>>> mlist.subscribe(list(anne.addresses)[0], MemberRole.member)
<Member: Anne Person <aperson@example.com> ...

>>> bart = user_manager.create_user('bperson@example.com', 'Bart Person')
>>> mlist.subscribe(list(bart.addresses)[0], MemberRole.member)
<Member: Bart Person <bperson@example.com> ...

>>> cris = user_manager.create_user('cperson@example.com', 'Cris Person')
>>> mlist.subscribe(list(cris.addresses)[0], MemberRole.member)
<Member: Cris Person <cperson@example.com> ...

The decorations happen when the message is delivered.

>>> decorating.deliver(mlist, msg, msgdata)
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> from operator import itemgetter
>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

Delivery address: aperson@example.com
Subscribed address: aperson@example.com
This is a test.
User name: Anne Person
Language: English (USA)
Options: http://example.com/aperson@example.com

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

Delivery address: bperson@example.com
Subscribed address: bperson@example.com
This is a test.
User name: Bart Person
Language: English (USA)
Options: http://example.com/bperson@example.com

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

Delivery address: cperson@example.com
Subscribed address: cperson@example.com
This is a test.
User name: Cris Person
Language: English (USA)
Options: http://example.com/cperson@example.com

Decorate only once

Do not decorate a message twice. Decorators must insert the decorated key
into the message metadata.

>>> msgdata['nodecorate'] = True
>>> decorating.deliver(mlist, msg, msgdata)
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

This is a test.

Fully personalized delivery

Fully personalized mail delivery is an enhancement over VERP delivery where
the To: field of the message is replaced with the recipient’s address. A
typical email message is sent to the mailing list’s posting address and copied
to the list membership that way. Some people like the more personal address.

Personalized delivery still does VERP.

>>> from mailman.mta.personalized import PersonalizedDelivery
>>> personalized = PersonalizedDelivery()

Delivery strategies must implement the proper interface.

>>> from mailman.interfaces.mta import IMailTransportAgentDelivery
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IMailTransportAgentDelivery, personalized)
True

No personalization

By default, the To: header is not personalized.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test one
... Message-ID: <aardvark>
...
... This is a test.
... """)

>>> recipients = set([
... 'aperson@example.com',
... 'bperson@example.com',
... 'cperson@example.com',
...])

>>> personalized.deliver(mlist, msg, dict(recipients=recipients))
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> from operator import itemgetter
>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

This is a test.

To header

When the mailing list requests personalization, the To: header is replaced
with the recipient’s address and name.

>>> from mailman.interfaces.mailinglist import Personalization
>>> mlist.personalize = Personalization.full
>>> transaction.commit()

>>> personalized.deliver(mlist, msg, dict(recipients=recipients))
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> for message in sorted(messages, key=itemgetter('to')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: aperson@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: bperson@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: cperson@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

This is a test.

If the recipient is a user registered with Mailman, and the user has an
associated real name, then this name also shows up in the To: header.

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)

>>> bill = user_manager.create_user('bperson@example.com', 'Bill Person')
>>> cate = user_manager.create_user('cperson@example.com', 'Cate Person')
>>> transaction.commit()

>>> personalized.deliver(mlist, msg, dict(recipients=recipients))
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> from operator import itemgetter
>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: aperson@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: Bill Person <bperson@example.com>
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: Cate Person <cperson@example.com>
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: cperson@example.com

This is a test.

Standard VERP delivery

Variable Envelope Return Path (VERP [http://en.wikipedia.org/wiki/Variable_envelope_return_path]) delivery is an alternative to bulk
delivery, where an individual message is crafted uniquely for each recipient.

The cost of enabling VERP is that Mailman must send to the upstream MTA, one
message per recipient. Under bulk delivery, an exact copy of one message can
be sent to many recipients, greatly reducing the bandwidth for delivery.

In Mailman, enabling VERP delivery for bounce detection brings with it a side
benefit: the message which must be crafted uniquely for each recipient, can be
further personalized to include all kinds of information unique to that
recipient. In the simplest case, the message can contain footer information,
e.g. pointing the user to their account URL or including a user-specific
unsubscription link. In theory, VERP delivery means we can do sophisticated
mail merge [http://en.wikipedia.org/wiki/Mail_merge] operations.

Mailman’s use of the term VERP really means message personalization.

>>> from mailman.mta.verp import VERPDelivery
>>> verp = VERPDelivery()

Delivery strategies must implement the proper interface.

>>> from mailman.interfaces.mta import IMailTransportAgentDelivery
>>> from zope.interface.verify import verifyObject
>>> verifyObject(IMailTransportAgentDelivery, verp)
True

No recipients

The message metadata specifies the set of recipients to send this message to.
If there are no recipients, there’s nothing to do.

>>> mlist = create_list('test@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.org
... To: test@example.com
... Subject: test one
... Message-ID: <aardvark>
...
... This is a test.
... """)

>>> verp.deliver(mlist, msg, {})
{}
>>> len(list(smtpd.messages))
0

>>> verp.deliver(mlist, msg, dict(recipients=set()))
{}
>>> len(list(smtpd.messages))
0

Individual copy

Each recipient of the message gets an individual, personalized copy of the
message, with their email address encoded into the envelope sender. This is
so the return path will point back to Mailman but allow for decoding of the
intended recipient’s delivery address.

>>> recipients = set([
... 'aperson@example.com',
... 'bperson@example.com',
... 'cperson@example.com',
...])

VERPing is only actually done if the metadata requests it.

>>> msgdata = dict(recipients=recipients, verp=True)
>>> verp.deliver(mlist, msg, msgdata)
{}
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> from operator import itemgetter
>>> for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message.as_string())
... print('----------')
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces+aperson=example.com@example.com
X-RcptTo: aperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces+bperson=example.com@example.com
X-RcptTo: bperson@example.com

This is a test.

From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
X-Peer: ...
X-MailFrom: test-bounces+cperson=example.com@example.com
X-RcptTo: cperson@example.com

This is a test.

The deliverer made a copy of the original message, so it wasn’t changed.

>>> print(msg.as_string())
From: aperson@example.org
To: test@example.com
Subject: test one
Message-ID: <aardvark>
<BLANKLINE>
This is a test.
<BLANKLINE>

Addresses

The REST API can be used to manage addresses.

There are no addresses yet.

>>> dump_json('http://localhost:9001/3.0/addresses')
http_etag: "..."
start: 0
total_size: 0

When an address is created via the internal API, it is available in the REST
API.

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)
>>> anne = user_manager.create_address('anne@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/addresses')
entry 0:
 email: anne@example.com
 http_etag: "..."
 original_email: anne@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/anne@example.com
http_etag: "..."
start: 0
total_size: 1

Anne’s address can also be accessed directly.

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com')
email: anne@example.com
http_etag: "..."
original_email: anne@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/anne@example.com

Bart registers with a mixed-case address. The canonical URL always includes
the lower-case version.

>>> bart = user_manager.create_address('Bart.Person@example.com')
>>> transaction.commit()
>>> dump_json(
... 'http://localhost:9001/3.0/addresses/bart.person@example.com')
email: bart.person@example.com
http_etag: "..."
original_email: Bart.Person@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/bart.person@example.com

But his address record can be accessed with the case-preserved version too.

>>> dump_json(
... 'http://localhost:9001/3.0/addresses/Bart.Person@example.com')
email: bart.person@example.com
http_etag: "..."
original_email: Bart.Person@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/bart.person@example.com

When an address has a real name associated with it, this is also available in
the REST API.

>>> cris = user_manager.create_address('cris@example.com', 'Cris Person')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com')
display_name: Cris Person
email: cris@example.com
http_etag: "..."
original_email: cris@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/cris@example.com

Verifying

When the address gets verified, this attribute is available in the REST
representation.

>>> from mailman.utilities.datetime import now
>>> anne.verified_on = now()
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com')
email: anne@example.com
http_etag: "..."
original_email: anne@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/anne@example.com
verified_on: 2005-08-01T07:49:23

Addresses can also be verified through the REST API, by POSTing to the
‘verify’ sub-resource. The POST data is ignored.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'cris@example.com/verify', {})
content-length: 0
date: ...
server: ...
status: 204

Now Cris’s address is verified.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com')
display_name: Cris Person
email: cris@example.com
http_etag: "..."
original_email: cris@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/cris@example.com
verified_on: 2005-08-01T07:49:23

If you should ever need to ‘unverify’ an address, POST to the ‘unverify’
sub-resource. Again, the POST data is ignored.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'cris@example.com/unverify', {})
content-length: 0
date: ...
server: ...
status: 204

Now Cris’s address is unverified.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com')
display_name: Cris Person
email: cris@example.com
http_etag: "..."
original_email: cris@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/cris@example.com

The user

To link an address to a user, a POST request can be sent to the /user
sub-resource of the address. If the user does not exist, it will be created.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user',
... {'display_name': 'Cris X. Person'})
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/1
server: ...
status: 201

The user is now created and the address is linked to it:

>>> cris.user
<User "Cris X. Person" (1) at 0x...>
>>> cris_user = user_manager.get_user('cris@example.com')
>>> cris_user
<User "Cris X. Person" (1) at 0x...>
>>> cris.user == cris_user
True
>>> [a.email for a in cris_user.addresses]
['cris@example.com']

A link to the user resource is now available as a sub-resource.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com')
display_name: Cris Person
email: cris@example.com
http_etag: "..."
original_email: cris@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/cris@example.com
user: http://localhost:9001/3.0/users/1

To prevent automatic user creation from taking place, add the auto_create
parameter to the POST request and set it to a false-equivalent value like 0:

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com/user',
... {'display_name': 'Anne User', 'auto_create': 0})
Traceback (most recent call last):
...
urllib.error.HTTPError: HTTP Error 403: ...

A request to the /user sub-resource will return the linked user’s
representation:

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user')
created_on: 2005-08-01T07:49:23
display_name: Cris X. Person
http_etag: "..."
is_server_owner: False
password: ...
self_link: http://localhost:9001/3.0/users/1
user_id: 1

The address and the user can be unlinked by sending a DELETE request on the
/user resource. The user itself is not deleted, only the link.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204
>>> transaction.abort()
>>> cris.user == None
True
>>> from uuid import UUID
>>> user_manager.get_user_by_id(UUID(int=1))
<User "Cris X. Person" (1) at 0x...>
>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user')
Traceback (most recent call last):
...
urllib.error.HTTPError: HTTP Error 404: ...

You can link an existing user to an address by passing the user’s ID in the
POST request.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user',
... {'user_id': 1})
content-length: 0
date: ...
server: ...
status: 200
>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user')
created_on: ...
display_name: Cris X. Person
http_etag: ...
password: ...
self_link: http://localhost:9001/3.0/users/1
user_id: 1

To link an address to a different user, you can either send a DELETE request
followed by a POST request, or you can send a PUT request.

>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user',
... {'display_name': 'Cris Q Person'}, method="PUT")
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/2
server: ...
status: 201
>>> dump_json('http://localhost:9001/3.0/addresses/cris@example.com/user')
created_on: ...
display_name: Cris Q Person
http_etag: ...
password: ...
self_link: http://localhost:9001/3.0/users/2
user_id: 2

User addresses

Users control addresses. The canonical URLs for these user-controlled
addresses live in the /addresses namespace.

>>> dave = user_manager.create_user('dave@example.com', 'Dave Person')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/users/dave@example.com/addresses')
entry 0:
 display_name: Dave Person
 email: dave@example.com
 http_etag: "..."
 original_email: dave@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/dave@example.com
 user: http://localhost:9001/3.0/users/3
http_etag: "..."
start: 0
total_size: 1

>>> dump_json('http://localhost:9001/3.0/addresses/dave@example.com')
display_name: Dave Person
email: dave@example.com
http_etag: "..."
original_email: dave@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/dave@example.com
user: http://localhost:9001/3.0/users/3

A user can be associated with multiple email addresses. You can add new
addresses to an existing user.

>>> dump_json(
... 'http://localhost:9001/3.0/users/dave@example.com/addresses', {
... 'email': 'dave.person@example.org'
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/addresses/dave.person@example.org
server: ...
status: 201

When you add the new address, you can give it an optional display name.

>>> dump_json(
... 'http://localhost:9001/3.0/users/dave@example.com/addresses', {
... 'email': 'dp@example.org',
... 'display_name': 'Davie P',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/addresses/dp@example.org
server: ...
status: 201

The user controls these new addresses.

>>> dump_json('http://localhost:9001/3.0/users/dave@example.com/addresses')
entry 0:
 email: dave.person@example.org
 http_etag: "..."
 original_email: dave.person@example.org
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/dave.person@example.org
 user: http://localhost:9001/3.0/users/3
entry 1:
 display_name: Dave Person
 email: dave@example.com
 http_etag: "..."
 original_email: dave@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/dave@example.com
 user: http://localhost:9001/3.0/users/3
entry 2:
 display_name: Davie P
 email: dp@example.org
 http_etag: "..."
 original_email: dp@example.org
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/dp@example.org
 user: http://localhost:9001/3.0/users/3
http_etag: "..."
start: 0
total_size: 3

Memberships

Addresses can be subscribed to mailing lists. When they are, all the
membership records for that address are easily accessible via the REST API.

Elle registers several email addresses.

>>> elle = user_manager.create_user('elle@example.com', 'Elle Person')
>>> subscriber = list(elle.addresses)[0]
>>> elle.register('eperson@example.com')
<Address: eperson@example.com [not verified] at ...>
>>> elle.register('elle.person@example.com')
<Address: elle.person@example.com [not verified] at ...>

Elle subscribes to two mailing lists with one of her addresses.

>>> ant = create_list('ant@example.com')
>>> bee = create_list('bee@example.com')
>>> ant.subscribe(subscriber)
<Member: Elle Person <elle@example.com> on ant@example.com
 as MemberRole.member>
>>> bee.subscribe(subscriber)
<Member: Elle Person <elle@example.com> on bee@example.com
 as MemberRole.member>
>>> transaction.commit()

Elle can get her memberships for each of her email addresses.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'elle@example.com/memberships')
entry 0:
 address: http://localhost:9001/3.0/addresses/elle@example.com
 delivery_mode: regular
 email: elle@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/4
entry 1:
 address: http://localhost:9001/3.0/addresses/elle@example.com
 delivery_mode: regular
 email: elle@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/4
http_etag: "..."
start: 0
total_size: 2

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'eperson@example.com/memberships')
http_etag: "..."
start: 0
total_size: 0

When Elle subscribes to the bee list again with a different address, this
does not show up in the list of memberships for his other address.

>>> subscriber = user_manager.get_address('eperson@example.com')
>>> bee.subscribe(subscriber)
<Member: eperson@example.com on bee@example.com as MemberRole.member>
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'elle@example.com/memberships')
entry 0:
 address: http://localhost:9001/3.0/addresses/elle@example.com
 delivery_mode: regular
 email: elle@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/4
entry 1:
 address: http://localhost:9001/3.0/addresses/elle@example.com
 delivery_mode: regular
 email: elle@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/4
http_etag: "..."
start: 0
total_size: 2

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'eperson@example.com/memberships')
entry 0:
 address: http://localhost:9001/3.0/addresses/eperson@example.com
 delivery_mode: regular
 email: eperson@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/4
http_etag: "..."
start: 0
total_size: 1

Deleting

Addresses can be deleted via the REST API.

>>> fred = user_manager.create_address('fred@example.com', 'Fred Person')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/addresses/fred@example.com')
display_name: Fred Person
email: fred@example.com
http_etag: "..."
original_email: fred@example.com
registered_on: 2005-08-01T07:49:23
self_link: http://localhost:9001/3.0/addresses/fred@example.com

>>> dump_json('http://localhost:9001/3.0/addresses/fred@example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204
>>> transaction.abort()

>>> print(user_manager.get_address('fred@example.com'))
None

If an address is linked to a user, deleting the address does not delete the
user, it just unlinks it.

>>> gwen = user_manager.create_user('gwen@example.com', 'Gwen Person')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/users/5/addresses')
entry 0:
 display_name: Gwen Person
 email: gwen@example.com
 http_etag: "..."
 original_email: gwen@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/gwen@example.com
 user: http://localhost:9001/3.0/users/5
http_etag: "795b0680c57ec2df3dceb68ccce2619fecdc7225"
start: 0
total_size: 1

>>> dump_json('http://localhost:9001/3.0/addresses/gwen@example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/users/5/addresses')
http_etag: "..."
start: 0
total_size: 0

REST server

Mailman exposes a REST HTTP server for administrative control.

The server listens for connections on a configurable host name and port.

It is always protected by HTTP basic authentication using a single global
user name and password. The credentials are set in the [webservice] section
of the configuration using the admin_user and admin_pass properties.

Because the REST server has full administrative access, it should always be
run only on localhost, unless you really know what you’re doing. In addition
you should set the user name and password to secure values and distribute them
to any REST clients with reasonable precautions.

The Mailman major and minor version numbers are in the URL.

Credentials

When the Authorization header contains the proper credentials, the request
succeeds.

>>> from httplib2 import Http
>>> headers = {
... 'Content-Type': 'application/x-www-form-urlencode',
... 'Authorization': 'Basic cmVzdGFkbWluOnJlc3RwYXNz',
... }
>>> url = 'http://localhost:9001/3.0/system/versions'
>>> response, content = Http().request(url, 'GET', None, headers)
>>> print(response.status)
200

Version information

System version information can be retrieved from the server, in the form of a
JSON encoded response.

>>> dump_json('http://localhost:9001/3.0/system/versions')
http_etag: "..."
mailman_version: GNU Mailman 3.0... (...)
python_version: ...
self_link: http://localhost:9001/3.0/system/versions

Domains

Domains are how Mailman interacts with email host names and web host names.

The test framework starts out with an example domain, so let's delete
that first.
>>> from mailman.interfaces.domain import IDomainManager
>>> from zope.component import getUtility
>>> domain_manager = getUtility(IDomainManager)

>>> domain_manager.remove('example.com')
<Domain example.com...>
>>> transaction.commit()

The REST API can be queried for the set of known domains, of which there are
initially none.

>>> dump_json('http://localhost:9001/3.0/domains')
http_etag: "..."
start: 0
total_size: 0

Once a domain is added, it is accessible through the API.

>>> domain_manager.add(
... 'example.com', 'An example domain', 'http://lists.example.com')
<Domain example.com, An example domain, base_url: http://lists.example.com>
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/domains')
entry 0:
 base_url: http://lists.example.com
 description: An example domain
 http_etag: "..."
 mail_host: example.com
 self_link: http://localhost:9001/3.0/domains/example.com
 url_host: lists.example.com
http_etag: "..."
start: 0
total_size: 1

At the top level, all domains are returned as separate entries.

>>> domain_manager.add(
... 'example.org',
... base_url='http://mail.example.org')
<Domain example.org, base_url: http://mail.example.org>
>>> domain_manager.add(
... 'lists.example.net',
... 'Porkmasters',
... 'http://example.net')
<Domain lists.example.net, Porkmasters, base_url: http://example.net>
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/domains')
entry 0:
 base_url: http://lists.example.com
 description: An example domain
 http_etag: "..."
 mail_host: example.com
 self_link: http://localhost:9001/3.0/domains/example.com
 url_host: lists.example.com
entry 1:
 base_url: http://mail.example.org
 description: None
 http_etag: "..."
 mail_host: example.org
 self_link: http://localhost:9001/3.0/domains/example.org
 url_host: mail.example.org
entry 2:
 base_url: http://example.net
 description: Porkmasters
 http_etag: "..."
 mail_host: lists.example.net
 self_link: http://localhost:9001/3.0/domains/lists.example.net
 url_host: example.net
http_etag: "..."
start: 0
total_size: 3

Individual domains

The information for a single domain is available by following one of the
self_links from the above collection.

>>> dump_json('http://localhost:9001/3.0/domains/lists.example.net')
base_url: http://example.net
description: Porkmasters
http_etag: "..."
mail_host: lists.example.net
self_link: http://localhost:9001/3.0/domains/lists.example.net
url_host: example.net

You can also list all the mailing lists for a given domain. At first, the
example.com domain does not contain any mailing lists.

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists')
http_etag: "..."
start: 0
total_size: 0

>>> dump_json('http://localhost:9001/3.0/lists', {
... 'fqdn_listname': 'test-domains@example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/lists/test-domains.example.com
...

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists')
entry 0:
 display_name: Test-domains
 fqdn_listname: test-domains@example.com
 http_etag: "..."
 ...
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/test-domains.example.com
 volume: 1
http_etag: "..."
start: 0
total_size: 1

Other domains continue to contain no mailing lists.

>>> dump_json('http://localhost:9001/3.0/domains/lists.example.net/lists')
http_etag: "..."
start: 0
total_size: 0

Creating new domains

New domains can be created by posting to the domains url.

>>> dump_json('http://localhost:9001/3.0/domains', {
... 'mail_host': 'lists.example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/domains/lists.example.com
...

Now the web service knows about our new domain.

>>> dump_json('http://localhost:9001/3.0/domains/lists.example.com')
base_url: http://lists.example.com
description: None
http_etag: "..."
mail_host: lists.example.com
self_link: http://localhost:9001/3.0/domains/lists.example.com
url_host: lists.example.com

And the new domain is in our database.

>>> domain_manager['lists.example.com']
<Domain lists.example.com, base_url: http://lists.example.com>

Unlock the database.
>>> transaction.abort()

You can also create a new domain with a description, a base url, and a contact
address.

>>> dump_json('http://localhost:9001/3.0/domains', {
... 'mail_host': 'my.example.com',
... 'description': 'My new domain',
... 'base_url': 'http://allmy.example.com'
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/domains/my.example.com
...

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com')
base_url: http://allmy.example.com
description: My new domain
http_etag: "..."
mail_host: my.example.com
self_link: http://localhost:9001/3.0/domains/my.example.com
url_host: allmy.example.com

>>> domain_manager['my.example.com']
<Domain my.example.com, My new domain, base_url: http://allmy.example.com>

Unlock the database.
>>> transaction.abort()

Deleting domains

Domains can also be deleted via the API.

>>> dump_json('http://localhost:9001/3.0/domains/lists.example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

Domain owners

Domains can have owners. By posting some addresses to the owners resource,
you can add some domain owners. Currently our domain has no owners:

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners')
http_etag: ...
start: 0
total_size: 0

Anne and Bart volunteer to be a domain owners.

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners', (
... ('owner', 'anne@example.com'), ('owner', 'bart@example.com')
...))
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners')
entry 0:
 created_on: 2005-08-01T07:49:23
 http_etag: ...
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
entry 1:
 created_on: 2005-08-01T07:49:23
 http_etag: ...
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/2
 user_id: 2
http_etag: ...
start: 0
total_size: 2

We can delete all the domain owners.

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

Now there are no owners.

>>> dump_json('http://localhost:9001/3.0/domains/my.example.com/owners')
http_etag: ...
start: 0
total_size: 0

New domains can be created with owners.

>>> dump_json('http://localhost:9001/3.0/domains', (
... ('mail_host', 'your.example.com'),
... ('owner', 'anne@example.com'),
... ('owner', 'bart@example.com'),
...))
content-length: 0
date: ...
location: http://localhost:9001/3.0/domains/your.example.com
server: ...
status: 201

The new domain has the expected owners.

>>> dump_json('http://localhost:9001/3.0/domains/your.example.com/owners')
entry 0:
 created_on: 2005-08-01T07:49:23
 http_etag: ...
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
entry 1:
 created_on: 2005-08-01T07:49:23
 http_etag: ...
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/2
 user_id: 2
http_etag: ...
start: 0
total_size: 2

REST API helpers

There are a number of helpers that make building out the REST API easier.

Resource paths

For example, most resources don’t have to worry about where they are rooted.
They only need to know where they are relative to the root URI, and this
function can return them the full path to the resource.

>>> from mailman.rest.helpers import path_to
>>> print(path_to('system'))
http://localhost:9001/3.0/system

Parameters like the scheme, host, port, and API version number can
be set in the configuration file.

>>> config.push('helpers', """
... [webservice]
... hostname: geddy
... port: 2112
... use_https: yes
... api_version: 4.2
... """)
>>> cleanups.append((config.pop, 'helpers'))

>>> print(path_to('system'))
https://geddy:2112/4.2/system

Etags

HTTP etags are a way for clients to decide whether their copy of a resource
has changed or not. Mailman’s REST API calculates this in a cheap and dirty
way. Pass in the dictionary representing the resource and that dictionary
gets modified to contain the etag under the http_etag key.

>>> from mailman.rest.helpers import etag
>>> resource = dict(geddy='bass', alex='guitar', neil='drums')
>>> json_data = etag(resource)
>>> print(resource['http_etag'])
"6929ecfbda2282980a4818fb75f82e812077f77a"

For convenience, the etag function also returns the JSON representation of the
dictionary after tagging, since that’s almost always what you want.

>>> import json
>>> data = json.loads(json_data)

This is pretty close to what we want, so it's convenient to use.
>>> dump_msgdata(data)
alex : guitar
geddy : bass
http_etag: "6929ecfbda2282980a4818fb75f82e812077f77a"
neil : drums

POST and PUT unpacking

Another helper unpacks POST and PUT request variables, validating and
converting their values.

>>> from mailman.rest.validator import Validator
>>> validator = Validator(one=int, two=str, three=bool)

>>> class FakeRequest:
... params = None
>>> FakeRequest.params = dict(one='1', two='two', three='yes')

On valid input, the validator can be used as a **keyword argument.

>>> def print_request(one, two, three):
... print(repr(one), repr(two), repr(three))
>>> print_request(**validator(FakeRequest))
1 'two' True

On invalid input, an exception is raised.

>>> FakeRequest.params['one'] = 'hello'
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Cannot convert parameters: one

On missing input, an exception is raised.

>>> del FakeRequest.params['one']
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Missing parameters: one

If more than one key is missing, it will be reflected in the error message.

>>> del FakeRequest.params['two']
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Missing parameters: one, two

Extra keys are also not allowed.

>>> FakeRequest.params = dict(one='1', two='two', three='yes',
... four='', five='')
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Unexpected parameters: five, four

However, if optional keys are missing, it’s okay.

>>> validator = Validator(one=int, two=str, three=bool,
... four=int, five=int,
... _optional=('four', 'five'))

>>> FakeRequest.params = dict(one='1', two='two', three='yes',
... four='4', five='5')
>>> def print_request(one, two, three, four=None, five=None):
... print(repr(one), repr(two), repr(three), repr(four), repr(five))
>>> print_request(**validator(FakeRequest))
1 'two' True 4 5

>>> del FakeRequest.params['four']
>>> print_request(**validator(FakeRequest))
1 'two' True None 5

>>> del FakeRequest.params['five']
>>> print_request(**validator(FakeRequest))
1 'two' True None None

But if the optional values are present, they must of course also be valid.

>>> FakeRequest.params = dict(one='1', two='two', three='yes',
... four='no', five='maybe')
>>> print_request(**validator(FakeRequest))
Traceback (most recent call last):
...
ValueError: Cannot convert parameters: five, four

Arrays

Some POST forms include more than one value for a particular key. This is
how lists and arrays are modeled. The validator does the right thing with
such form data. Specifically, when a key shows up multiple times in the form
data, a list is given to the validator.

We can't use a normal dictionary because we'll have multiple keys, but
the validator only wants to call .items() on the object.
>>> class MultiDict:
... def __init__(self, *params): self.values = list(params)
... def items(self): return iter(self.values)
>>> form_data = MultiDict(
... ('one', '1'),
... ('many', '3'),
... ('many', '4'),
... ('many', '5'),
...)

This is a validation function that ensures the value is a list.

>>> def must_be_list(value):
... if not isinstance(value, list):
... raise ValueError('not a list')
... return [int(item) for item in value]

This is a validation function that ensure the value is not a list.

>>> def must_be_scalar(value):
... if isinstance(value, list):
... raise ValueError('is a list')
... return int(value)

And a validator to pull it all together.

>>> validator = Validator(one=must_be_scalar, many=must_be_list)
>>> FakeRequest.params = form_data
>>> values = validator(FakeRequest)
>>> print(values['one'])
1
>>> print(values['many'])
[3, 4, 5]

The list values are guaranteed to be in the same order they show up in the
form data.

>>> FakeRequest.params = MultiDict(
... ('one', '1'),
... ('many', '3'),
... ('many', '5'),
... ('many', '4'),
...)
>>> values = validator(FakeRequest)
>>> print(values['one'])
1
>>> print(values['many'])
[3, 5, 4]

Mailing list configuration

Mailing lists can be configured via the REST API.

>>> mlist = create_list('ant@example.com')
>>> transaction.commit()

Reading a configuration

All readable attributes for a list are available on a sub-resource.

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/config')
acceptable_aliases: []
admin_immed_notify: True
admin_notify_mchanges: False
administrivia: True
advertised: True
allow_list_posts: True
anonymous_list: False
archive_policy: public
autorespond_owner: none
autorespond_postings: none
autorespond_requests: none
autoresponse_grace_period: 90d
autoresponse_owner_text:
autoresponse_postings_text:
autoresponse_request_text:
bounces_address: ant-bounces@example.com
collapse_alternatives: True
convert_html_to_plaintext: False
created_at: 20...T...
default_member_action: defer
default_nonmember_action: hold
description:
digest_last_sent_at: None
digest_size_threshold: 30.0
display_name: Ant
filter_content: False
first_strip_reply_to: False
fqdn_listname: ant@example.com
http_etag: "..."
include_rfc2369_headers: True
join_address: ant-join@example.com
last_post_at: None
leave_address: ant-leave@example.com
list_name: ant
mail_host: example.com
next_digest_number: 1
no_reply_address: noreply@example.com
owner_address: ant-owner@example.com
post_id: 1
posting_address: ant@example.com
posting_pipeline: default-posting-pipeline
reply_goes_to_list: no_munging
reply_to_address:
request_address: ant-request@example.com
scheme: http
send_welcome_message: True
subject_prefix: [Ant]
subscription_policy: confirm
volume: 1
web_host: lists.example.com
welcome_message_uri: mailman:///welcome.txt

Changing the full configuration

Not all of the readable attributes can be set through the web interface. The
ones that can, can either be set via PUT or PATCH. PUT changes
all the writable attributes in one request.

When using PUT, all writable attributes must be included.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config',
... dict(
... acceptable_aliases=['one@example.com', 'two@example.com'],
... admin_immed_notify=False,
... admin_notify_mchanges=True,
... administrivia=False,
... advertised=False,
... anonymous_list=True,
... archive_policy='never',
... autorespond_owner='respond_and_discard',
... autorespond_postings='respond_and_continue',
... autorespond_requests='respond_and_discard',
... autoresponse_grace_period='45d',
... autoresponse_owner_text='the owner',
... autoresponse_postings_text='the mailing list',
... autoresponse_request_text='the robot',
... display_name='Fnords',
... description='This is my mailing list',
... include_rfc2369_headers=False,
... allow_list_posts=False,
... digest_size_threshold=10.5,
... posting_pipeline='virgin',
... filter_content=True,
... first_strip_reply_to=True,
... convert_html_to_plaintext=True,
... collapse_alternatives=False,
... reply_goes_to_list='point_to_list',
... reply_to_address='bee@example.com',
... send_welcome_message=False,
... subject_prefix='[ant]',
... subscription_policy='moderate',
... welcome_message_uri='mailman:///welcome.txt',
... default_member_action='hold',
... default_nonmember_action='discard',
...),
... 'PUT')
content-length: 0
date: ...
server: WSGIServer/...
status: 204

These values are changed permanently.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config')
acceptable_aliases: ['one@example.com', 'two@example.com']
admin_immed_notify: False
admin_notify_mchanges: True
administrivia: False
advertised: False
allow_list_posts: False
anonymous_list: True
archive_policy: never
autorespond_owner: respond_and_discard
autorespond_postings: respond_and_continue
autorespond_requests: respond_and_discard
autoresponse_grace_period: 45d
autoresponse_owner_text: the owner
autoresponse_postings_text: the mailing list
autoresponse_request_text: the robot
...
collapse_alternatives: False
convert_html_to_plaintext: True
...
default_member_action: hold
default_nonmember_action: discard
description: This is my mailing list
...
digest_size_threshold: 10.5
display_name: Fnords
filter_content: True
first_strip_reply_to: True
...
include_rfc2369_headers: False
...
posting_pipeline: virgin
reply_goes_to_list: point_to_list
reply_to_address: bee@example.com
...
send_welcome_message: False
subject_prefix: [ant]
subscription_policy: moderate
...
welcome_message_uri: mailman:///welcome.txt

Changing a partial configuration

Using PATCH, you can change just one attribute.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config',
... dict(display_name='My List'),
... 'PATCH')
content-length: 0
date: ...
server: ...
status: 204

These values are changed permanently.

>>> print(mlist.display_name)
My List

Sub-resources

Mailing list configuration variables are actually available as sub-resources
on the mailing list. Their values can be retrieved and set through the
sub-resource.

Simple resources

You can view the current value of the sub-resource.

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name')
display_name: My List
http_etag: ...

The resource can be changed by PUTting to it. Note that the value still
requires a dictionary, and that dictionary must have a single key matching the
name of the resource.

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name',
... dict(display_name='Your List'),
... 'PUT')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name')
display_name: Your List
http_etag: ...

PATCH works the same way, with the same effect, so you can choose to use
either method.

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name',
... dict(display_name='Their List'),
... 'PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/lists/ant.example.com'
... '/config/display_name')
display_name: Their List
http_etag: ...

Acceptable aliases

These are recipient aliases that can be used in the To: and CC:
headers instead of the posting address. They are often used in forwarded
emails. By default, a mailing list has no acceptable aliases.

>>> from mailman.interfaces.mailinglist import IAcceptableAliasSet
>>> IAcceptableAliasSet(mlist).clear()
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config/acceptable_aliases')
acceptable_aliases: []
http_etag: "..."

We can add a few by PUT-ing them on the sub-resource. The keys in the
dictionary are ignored.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/config/acceptable_aliases',
... dict(acceptable_aliases=['foo@example.com',
... 'bar@example.net']),
... 'PUT')
content-length: 0
date: ...
server: WSGIServer/...
status: 204

Aliases are returned as a list on the aliases key.

>>> response = call_http(
... 'http://localhost:9001/3.0/lists/'
... 'ant@example.com/config/acceptable_aliases')
>>> for alias in response['acceptable_aliases']:
... print(alias)
bar@example.net
foo@example.com

The mailing list has its aliases set.

>>> from mailman.interfaces.mailinglist import IAcceptableAliasSet
>>> aliases = IAcceptableAliasSet(mlist)
>>> for alias in sorted(aliases.aliases):
... print(alias)
bar@example.net
foo@example.com

Mailing lists

The REST API can be queried for the set of known mailing lists. There is a
top level collection that can return all the mailing lists. There aren’t any
yet though.

>>> dump_json('http://localhost:9001/3.0/lists')
http_etag: "..."
start: 0
total_size: 0

Create a mailing list in a domain and it’s accessible via the API.

>>> mlist = create_list('ant@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/lists')
entry 0:
 display_name: Ant
 fqdn_listname: ant@example.com
 http_etag: "..."
 list_id: ant.example.com
 list_name: ant
 mail_host: example.com
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/ant.example.com
 volume: 1
http_etag: "..."
start: 0
total_size: 1

You can also query for lists from a particular domain.

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists')
entry 0:
 display_name: Ant
 fqdn_listname: ant@example.com
 http_etag: "..."
 list_id: ant.example.com
 list_name: ant
 mail_host: example.com
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/ant.example.com
 volume: 1
http_etag: "..."
start: 0
total_size: 1

Paginating over list records

Instead of returning all the list records at once, it’s possible to return
them in pages by adding the GET parameters count and page to the
request URI. Page 1 is the first page and count defines the size of the
page.

>>> mlist = create_list('bird@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists'
... '?count=1&page=1')
entry 0:
 display_name: Ant
 fqdn_listname: ant@example.com
 http_etag: "..."
 list_id: ant.example.com
 list_name: ant
 mail_host: example.com
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/ant.example.com
 volume: 1
http_etag: "..."
start: 0
total_size: 2

>>> dump_json('http://localhost:9001/3.0/domains/example.com/lists'
... '?count=1&page=2')
entry 0:
 display_name: Bird
 fqdn_listname: bird@example.com
 http_etag: "..."
 list_id: bird.example.com
 list_name: bird
 mail_host: example.com
 member_count: 0
 self_link: http://localhost:9001/3.0/lists/bird.example.com
 volume: 1
http_etag: "..."
start: 1
total_size: 2

Creating lists via the API

New mailing lists can also be created through the API, by posting to the
lists URL.

>>> dump_json('http://localhost:9001/3.0/lists', {
... 'fqdn_listname': 'bee@example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/lists/bee.example.com
...

The mailing list exists in the database.

>>> from mailman.interfaces.listmanager import IListManager
>>> from zope.component import getUtility
>>> list_manager = getUtility(IListManager)

>>> bee = list_manager.get('bee@example.com')
>>> bee
<mailing list "bee@example.com" at ...>

The mailing list was created using the default style, which allows list posts.

>>> bee.allow_list_posts
True

It is also available in the REST API via the location given in the response.

>>> dump_json('http://localhost:9001/3.0/lists/bee.example.com')
display_name: Bee
fqdn_listname: bee@example.com
http_etag: "..."
list_id: bee.example.com
list_name: bee
mail_host: example.com
member_count: 0
self_link: http://localhost:9001/3.0/lists/bee.example.com
volume: 1

Normally, you access the list via its RFC 2369 list-id as shown above, but for
backward compatibility purposes, you can also access it via the list’s posting
address, if that has never been changed (since the list-id is immutable, but
the posting address is not).

>>> dump_json('http://localhost:9001/3.0/lists/bee@example.com')
display_name: Bee
fqdn_listname: bee@example.com
http_etag: "..."
list_id: bee.example.com
list_name: bee
mail_host: example.com
member_count: 0
self_link: http://localhost:9001/3.0/lists/bee.example.com
volume: 1

Apply a style at list creation time

List styles allow you to more easily create mailing lists
of a particular type, e.g. discussion lists. We can see which styles are
available, and which is the default style.

>>> dump_json('http://localhost:9001/3.0/lists/styles')
default: legacy-default
http_etag: "..."
style_names: ['legacy-announce', 'legacy-default']

When creating a list, if we don’t specify a style to apply, the default style
is used. However, we can provide a style name in the POST data to choose a
different style.

>>> dump_json('http://localhost:9001/3.0/lists', {
... 'fqdn_listname': 'cat@example.com',
... 'style_name': 'legacy-announce',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/lists/cat.example.com
...

We can tell that the list was created using the legacy-announce style,
because announce lists don’t allow posting by the general public.

>>> cat = list_manager.get('cat@example.com')
>>> cat.allow_list_posts
False

Deleting lists via the API

Existing mailing lists can be deleted through the API, by doing an HTTP
DELETE on the mailing list URL.

>>> dump_json('http://localhost:9001/3.0/lists/bee.example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

The mailing list does not exist.

>>> print(list_manager.get('bee@example.com'))
None

For backward compatibility purposes, you can delete a list via its posting
address as well.

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

The mailing list does not exist.

>>> print(list_manager.get('ant@example.com'))
None

Managing mailing list archivers

The Mailman system has some site-wide enabled archivers, and each mailing list
can enable or disable these archivers individually. This gives list owners
control over where traffic to their list is archived. You can see which
archivers are available, and whether they are enabled for this mailing list.

>>> mlist = create_list('dog@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/lists/dog@example.com/archivers')
http_etag: "..."
mail-archive: True
mhonarc: True
prototype: True

You can set all the archiver states by putting new state flags on the
resource.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/dog@example.com/archivers', {
... 'mail-archive': False,
... 'mhonarc': True,
... 'prototype': False,
... }, method='PUT')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/lists/dog@example.com/archivers')
http_etag: "..."
mail-archive: False
mhonarc: True
prototype: False

You can change the state of a subset of the list archivers.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/dog@example.com/archivers', {
... 'mhonarc': False,
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/lists/dog@example.com/archivers')
http_etag: "..."
mail-archive: False
mhonarc: False
prototype: False

Membership

The REST API can be used to subscribe and unsubscribe users to mailing lists.
A subscribed user is called a member. There is a top level collection that
returns all the members of all known mailing lists.

There are no mailing lists and no members yet.

>>> dump_json('http://localhost:9001/3.0/members')
http_etag: "..."
start: 0
total_size: 0

We create a mailing list, which starts out with no members.

>>> bee = create_list('bee@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/members')
http_etag: "..."
start: 0
total_size: 0

Subscribers

After Bart subscribes to the mailing list, his subscription is available via
the REST interface.

>>> from mailman.interfaces.member import MemberRole
>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> from mailman.testing.helpers import subscribe
>>> subscribe(bee, 'Bart')
<Member: Bart Person <bperson@example.com> on bee@example.com
 as MemberRole.member>

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
http_etag: "..."
start: 0
total_size: 1

Bart’s specific membership can be accessed directly:

>>> dump_json('http://localhost:9001/3.0/members/1')
address: http://localhost:9001/3.0/addresses/bperson@example.com
delivery_mode: regular
email: bperson@example.com
http_etag: ...
list_id: bee.example.com
member_id: 1
role: member
self_link: http://localhost:9001/3.0/members/1
user: http://localhost:9001/3.0/users/1

When Cris also joins the mailing list, her subscription is also available via
the REST interface.

>>> subscribe(bee, 'Cris')
<Member: Cris Person <cperson@example.com> on bee@example.com
 as MemberRole.member>

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 2

The subscribed members are returned in alphabetical order, so when Anna
subscribes, she is returned first.

>>> subscribe(bee, 'Anna')
<Member: Anna Person <aperson@example.com> on bee@example.com
 as MemberRole.member>

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 2:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 3

Subscriptions are also returned alphabetically by mailing list posting
address. Anna and Cris subscribe to this new mailing list.

>>> ant = create_list('ant@example.com')
>>> subscribe(ant, 'Anna')
<Member: Anna Person <aperson@example.com> on ant@example.com
 as MemberRole.member>
>>> subscribe(ant, 'Cris')
<Member: Cris Person <cperson@example.com> on ant@example.com
 as MemberRole.member>

User ids are different than member ids.

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 5
 role: member
 self_link: http://localhost:9001/3.0/members/5
 user: http://localhost:9001/3.0/users/2
entry 2:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
entry 3:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 4:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 5

We can also get just the members of a single mailing list.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/ant@example.com/roster/member')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 5
 role: member
 self_link: http://localhost:9001/3.0/members/5
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 2

Paginating over member records

Instead of returning all the member records at once, it’s possible to return
them in pages by adding the GET parameters count and page to the
request URI. Page 1 is the first page and count defines the size of the
page.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/ant@example.com/roster/member'
... '?count=1&page=1')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
http_etag: ...
start: 0
total_size: 2

This works with members of a single list as well as with all members.

>>> dump_json(
... 'http://localhost:9001/3.0/members?count=1&page=1')
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
http_etag: ...
start: 0
total_size: 5

Owners and moderators

Mailing list owners and moderators also show up in the REST API. Cris becomes
an owner of the ant mailing list and Dave becomes a moderator of the bee
mailing list.

>>> dump_json('http://localhost:9001/3.0/members', {
... 'list_id': 'ant.example.com',
... 'subscriber': 'dperson@example.com',
... 'role': 'moderator',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/members/6
server: ...
status: 201

>>> dump_json('http://localhost:9001/3.0/members', {
... 'list_id': 'bee.example.com',
... 'subscriber': 'cperson@example.com',
... 'role': 'owner',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/members/7
server: ...
status: 201

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
 address: http://localhost:9001/3.0/addresses/dperson@example.com
 delivery_mode: regular
 email: dperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 6
 role: moderator
 self_link: http://localhost:9001/3.0/members/6
 user: http://localhost:9001/3.0/users/4
entry 1:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
entry 2:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 5
 role: member
 self_link: http://localhost:9001/3.0/members/5
 user: http://localhost:9001/3.0/users/2
entry 3:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 7
 role: owner
 self_link: http://localhost:9001/3.0/members/7
 user: http://localhost:9001/3.0/users/2
entry 4:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
entry 5:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 6:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 7

We can access all the owners of a list.

>>> dump_json(
... 'http://localhost:9001/3.0/lists/bee@example.com/roster/owner')
entry 0:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 7
 role: owner
 self_link: http://localhost:9001/3.0/members/7
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 1

Finding members

A specific member can always be referenced by their role and address.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'bee@example.com/owner/cperson@example.com')
address: http://localhost:9001/3.0/addresses/cperson@example.com
delivery_mode: regular
email: cperson@example.com
http_etag: ...
list_id: bee.example.com
member_id: 7
role: owner
self_link: http://localhost:9001/3.0/members/7
user: http://localhost:9001/3.0/users/2

You can find a specific member based on several different criteria. For
example, we can search for all the memberships of a particular address.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'subscriber': 'aperson@example.com',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 4
 role: member
 self_link: http://localhost:9001/3.0/members/4
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
http_etag: ...
start: 0
total_size: 2

Or, we can find all the memberships for a particular mailing list.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'list_id': 'bee.example.com',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/aperson@example.com
 delivery_mode: regular
 email: aperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 3
 role: member
 self_link: http://localhost:9001/3.0/members/3
 user: http://localhost:9001/3.0/users/3
entry 1:
 address: http://localhost:9001/3.0/addresses/bperson@example.com
 delivery_mode: regular
 email: bperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 1
 role: member
 self_link: http://localhost:9001/3.0/members/1
 user: http://localhost:9001/3.0/users/1
entry 2:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
entry 3:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 7
 role: owner
 self_link: http://localhost:9001/3.0/members/7
 user: http://localhost:9001/3.0/users/2
http_etag: "..."
start: 0
total_size: 4

Or, we can find all the memberships for an address on a particular mailing
list.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'subscriber': 'cperson@example.com',
... 'list_id': 'bee.example.com',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 7
 role: owner
 self_link: http://localhost:9001/3.0/members/7
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 2

Or, we can find all the memberships for an address with a specific role.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'subscriber': 'cperson@example.com',
... 'role': 'member',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 5
 role: member
 self_link: http://localhost:9001/3.0/members/5
 user: http://localhost:9001/3.0/users/2
entry 1:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 2

Finally, we can search for a specific member given all three criteria.

>>> dump_json('http://localhost:9001/3.0/members/find', {
... 'subscriber': 'cperson@example.com',
... 'list_id': 'bee.example.com',
... 'role': 'member',
... })
entry 0:
 address: http://localhost:9001/3.0/addresses/cperson@example.com
 delivery_mode: regular
 email: cperson@example.com
 http_etag: ...
 list_id: bee.example.com
 member_id: 2
 role: member
 self_link: http://localhost:9001/3.0/members/2
 user: http://localhost:9001/3.0/users/2
http_etag: ...
start: 0
total_size: 1

Joining a mailing list

A user can be subscribed to a mailing list via the REST API, either by a
specific address, or more generally by their preferred address. A subscribed
user is called a member.

The list owner wants to subscribe Elly to the ant mailing list. Since
Elly’s email address is not yet known to Mailman, a user is created for her.
By default, get gets a regular delivery.

>>> dump_json('http://localhost:9001/3.0/members', {
... 'list_id': 'ant.example.com',
... 'subscriber': 'eperson@example.com',
... 'display_name': 'Elly Person',
... 'pre_verified': True,
... 'pre_confirmed': True,
... 'pre_approved': True,
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/members/8
server: ...
status: 201

Elly is now a known user, and a member of the mailing list.

>>> elly = user_manager.get_user('eperson@example.com')
>>> elly
<User "Elly Person" (...) at ...>

>>> set(member.list_id for member in elly.memberships.members)
{'ant.example.com'}

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
...
entry 3:
 address: http://localhost:9001/3.0/addresses/eperson@example.com
 delivery_mode: regular
 email: eperson@example.com
 http_etag: ...
 list_id: ant.example.com
 member_id: 8
 role: member
 self_link: http://localhost:9001/3.0/members/8
 user: http://localhost:9001/3.0/users/5
...

Gwen is a user with a preferred address. She subscribes to the ant mailing
list with her preferred address.

>>> from mailman.utilities.datetime import now
>>> gwen = user_manager.create_user('gwen@example.com', 'Gwen Person')
>>> preferred = list(gwen.addresses)[0]
>>> preferred.verified_on = now()
>>> gwen.preferred_address = preferred

Note that we must extract the user id before we commit the transaction.
This is because accessing the .user_id attribute will lock the database
in the testing process, breaking the REST queue process. Also, the
user_id is a UUID internally, but an integer (represented as a string)
is required by the REST API.
>>> user_id = gwen.user_id.int
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/members', {
... 'list_id': 'ant.example.com',
... 'subscriber': user_id,
... 'pre_verified': True,
... 'pre_confirmed': True,
... 'pre_approved': True,
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/members/9
server: ...
status: 201

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
...
entry 4:
 address: http://localhost:9001/3.0/addresses/gwen@example.com
 delivery_mode: regular
 email: gwen@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 9
 role: member
 self_link: http://localhost:9001/3.0/members/9
 user: http://localhost:9001/3.0/users/6
...
total_size: 9

When Gwen changes her preferred address, her subscription automatically tracks
the new address.

>>> new_preferred = gwen.register('gwen.person@example.com')
>>> new_preferred.verified_on = now()
>>> gwen.preferred_address = new_preferred
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
...
entry 4:
 address: http://localhost:9001/3.0/addresses/gwen.person@example.com
 delivery_mode: regular
 email: gwen.person@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 9
 role: member
 self_link: http://localhost:9001/3.0/members/9
 user: http://localhost:9001/3.0/users/6
...
total_size: 9

Leaving a mailing list

Elly decides she does not want to be a member of the mailing list after all,
so she leaves from the mailing list.

Ensure our previous reads don't keep the database lock.
>>> transaction.abort()
>>> dump_json('http://localhost:9001/3.0/members/8',
... method='DELETE')
content-length: 0
...
status: 204

Elly is no longer a member of the mailing list.

>>> set(member.mailing_list for member in elly.memberships.members)
set()

Changing delivery address

As shown above, Gwen is subscribed to a mailing list with her preferred email
address. If she changes her preferred address, this automatically changes the
address she will receive deliveries at for all such memberships.

However, when Herb subscribes to a couple of mailing lists with explicit
addresses, he must change each subscription explicitly.

Herb controls multiple email addresses. All of these addresses are verified.

>>> herb = user_manager.create_user('herb@example.com', 'Herb Person')
>>> herb_1 = list(herb.addresses)[0]
>>> herb_2 = herb.register('hperson@example.com')
>>> herb_3 = herb.register('herb.person@example.com')
>>> for address in herb.addresses:
... address.verified_on = now()

Herb subscribes to both the ant and bee mailing lists with one of his
addresses.

>>> ant.subscribe(herb_1)
<Member: Herb Person <herb@example.com> on
 ant@example.com as MemberRole.member>
>>> bee.subscribe(herb_1)
<Member: Herb Person <herb@example.com> on
 bee@example.com as MemberRole.member>
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/members')
entry 0:
...
entry 4:
 address: http://localhost:9001/3.0/addresses/herb@example.com
 delivery_mode: regular
 email: herb@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 10
 role: member
 self_link: http://localhost:9001/3.0/members/10
 user: http://localhost:9001/3.0/users/7
...
entry 9:
 address: http://localhost:9001/3.0/addresses/herb@example.com
 delivery_mode: regular
 email: herb@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 11
 role: member
 self_link: http://localhost:9001/3.0/members/11
 user: http://localhost:9001/3.0/users/7
http_etag: "..."
start: 0
total_size: 10

In order to change all of his subscriptions to use a different email address,
Herb must iterate through his memberships explicitly.

>>> from mailman.testing.helpers import call_api
>>> content, response = call_api('http://localhost:9001/3.0/addresses/'
... 'herb@example.com/memberships')
>>> memberships = [entry['self_link'] for entry in content['entries']]
>>> for url in sorted(memberships):
... print(url)
http://localhost:9001/3.0/members/10
http://localhost:9001/3.0/members/11

For each membership resource, the subscription address is changed by PATCH’ing
the address attribute.

>>> dump_json('http://localhost:9001/3.0/members/10', {
... 'address': 'hperson@example.com',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/members/11', {
... 'address': 'hperson@example.com',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

Herb’s memberships with the old address are gone.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'herb@example.com/memberships')
http_etag: "..."
start: 0
total_size: 0

Herb’s memberships have been updated with his new email address. Of course,
his membership ids have not changed.

>>> dump_json('http://localhost:9001/3.0/addresses/'
... 'hperson@example.com/memberships')
entry 0:
 address: http://localhost:9001/3.0/addresses/hperson@example.com
 delivery_mode: regular
 email: hperson@example.com
 http_etag: "..."
 list_id: ant.example.com
 member_id: 10
 role: member
 self_link: http://localhost:9001/3.0/members/10
 user: http://localhost:9001/3.0/users/7
entry 1:
 address: http://localhost:9001/3.0/addresses/hperson@example.com
 delivery_mode: regular
 email: hperson@example.com
 http_etag: "..."
 list_id: bee.example.com
 member_id: 11
 role: member
 self_link: http://localhost:9001/3.0/members/11
 user: http://localhost:9001/3.0/users/7
http_etag: "..."
start: 0
total_size: 2

Post Moderation

Messages which are held for approval can be accepted, rejected, discarded, or
deferred by the list moderators.

Viewing the list of held messages

Held messages can be moderated through the REST API. A mailing list starts
with no held messages.

>>> ant = create_list('ant@example.com')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/held')
http_etag: "..."
start: 0
total_size: 0

When a message gets held for moderator approval, it shows up in this list.

>>> msg = message_from_string("""\
... From: anne@example.com
... To: ant@example.com
... Subject: Something
... Message-ID: <alpha>
...
... Something else.
... """)

>>> from mailman.app.moderator import hold_message
>>> request_id = hold_message(ant, msg, {'extra': 7}, 'Because')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/held')
entry 0:
 extra: 7
 hold_date: 2005-08-01T07:49:23
 http_etag: "..."
 message_id: <alpha>
 msg: From: anne@example.com
To: ant@example.com
Subject: Something
Message-ID: <alpha>
X-Message-ID-Hash: GCSMSG43GYWWVUMO6F7FBUSSPNXQCJ6M

Something else.

 reason: Because
 request_id: 1
 sender: anne@example.com
 subject: Something
http_etag: "..."
start: 0
total_size: 1

You can get an individual held message by providing the request id for that
message. This will include the text of the message.

>>> def url(request_id):
... return ('http://localhost:9001/3.0/lists/'
... 'ant@example.com/held/{0}'.format(request_id))

>>> dump_json(url(request_id))
extra: 7
hold_date: 2005-08-01T07:49:23
http_etag: "..."
message_id: <alpha>
msg: From: anne@example.com
To: ant@example.com
Subject: Something
Message-ID: <alpha>
X-Message-ID-Hash: GCSMSG43GYWWVUMO6F7FBUSSPNXQCJ6M

Something else.

reason: Because
request_id: 1
sender: anne@example.com
subject: Something

Disposing of held messages

Individual messages can be moderated through the API by POSTing back to the
held message’s resource. The POST data requires an action of one of the
following:

	discard - throw the message away.

	reject - bounces the message back to the original author.

	defer - defer any action on the message (continue to hold it)

	accept - accept the message for posting.

Let’s see what happens when the above message is deferred.

>>> dump_json(url(request_id), {
... 'action': 'defer',
... })
content-length: 0
date: ...
server: ...
status: 204

The message is still in the moderation queue.

>>> dump_json(url(request_id))
extra: 7
hold_date: 2005-08-01T07:49:23
http_etag: "..."
message_id: <alpha>
msg: From: anne@example.com
To: ant@example.com
Subject: Something
Message-ID: <alpha>
X-Message-ID-Hash: GCSMSG43GYWWVUMO6F7FBUSSPNXQCJ6M
<BLANKLINE>
Something else.
<BLANKLINE>
reason: Because
request_id: 1
sender: anne@example.com
subject: Something

The held message can be discarded.

>>> dump_json(url(request_id), {
... 'action': 'discard',
... })
content-length: 0
date: ...
server: ...
status: 204

Messages can also be accepted via the REST API. Let’s hold a new message for
moderation.

>>> del msg['message-id']
>>> msg['Message-ID'] = '<bravo>'
>>> request_id = hold_message(ant, msg)
>>> transaction.commit()

>>> results = call_http(url(request_id))
>>> print(results['message_id'])
<bravo>

>>> dump_json(url(request_id), {
... 'action': 'accept',
... })
content-length: 0
date: ...
server: ...
status: 204

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('pipeline')
>>> len(messages)
1
>>> print(messages[0].msg['message-id'])
<bravo>

Messages can be rejected via the REST API too. These bounce the message back
to the original author.

>>> del msg['message-id']
>>> msg['Message-ID'] = '<charlie>'
>>> request_id = hold_message(ant, msg)
>>> transaction.commit()

>>> results = call_http(url(request_id))
>>> print(results['message_id'])
<charlie>

>>> dump_json(url(request_id), {
... 'action': 'reject',
... })
content-length: 0
date: ...
server: ...
status: 204

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg['subject'])
Request to mailing list "Ant" rejected

Preferences

Addresses have preferences.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> anne = user_manager.create_address('anne@example.com')
>>> transaction.commit()

Although to start with, an address has no preferences.

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences')
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/anne@example.com/preferences

Once the address is given some preferences, they are available through the
REST API.

>>> anne.preferences.acknowledge_posts = True
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences')
acknowledge_posts: True
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/anne@example.com/preferences

Similarly, users have their own set of preferences, which also start out empty.

>>> bart = user_manager.create_user('bart@example.com')
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences')
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/bart@example.com/preferences

Setting a preference on the user’s address does not set them on the user.

>>> list(bart.addresses)[0].preferences.acknowledge_posts = True
>>> transaction.commit()

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences')
acknowledge_posts: True
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/bart@example.com/preferences

>>> dump_json('http://localhost:9001/3.0/users/1/preferences')
http_etag: "..."
self_link: http://localhost:9001/3.0/users/1/preferences

Users have their own set of preferences.

>>> bart.preferences.receive_own_postings = False
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/users/1/preferences')
http_etag: "..."
receive_own_postings: False
self_link: http://localhost:9001/3.0/users/1/preferences

Similarly, members have their own separate set of preferences, and just like
the above, setting a preference on the member’s address or user does not set
the preference on the member.

>>> from mailman.interfaces.member import MemberRole
>>> mlist = create_list('test@example.com')
>>> bart_member = mlist.subscribe(list(bart.addresses)[0])
>>> bart_member.preferences.receive_list_copy = False
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/members/1/preferences')
http_etag: "..."
receive_list_copy: False
self_link: http://localhost:9001/3.0/members/1/preferences

Changing preferences

Preferences for the address, user, or member can be changed through the API.
You can change all the preferences for a particular object by using an HTTP
PUT operation.

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences', {
... 'acknowledge_posts': True,
... 'delivery_mode': 'plaintext_digests',
... 'delivery_status': 'by_user',
... 'hide_address': False,
... 'preferred_language': 'ja',
... 'receive_list_copy': True,
... 'receive_own_postings': False,
... }, method='PUT')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences')
acknowledge_posts: True
delivery_mode: plaintext_digests
delivery_status: by_user
hide_address: False
http_etag: "..."
preferred_language: ja
receive_list_copy: True
receive_own_postings: False
self_link: http://localhost:9001/3.0/addresses/bart@example.com/preferences

You can also update just a few of the attributes using PATCH.

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences', {
... 'delivery_mode': 'plaintext_digests',
... 'receive_list_copy': False,
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/addresses/bart@example.com'
... '/preferences')
acknowledge_posts: True
delivery_mode: plaintext_digests
delivery_status: by_user
hide_address: False
http_etag: "..."
preferred_language: ja
receive_list_copy: False
receive_own_postings: False
self_link: http://localhost:9001/3.0/addresses/bart@example.com/preferences

Deleting preferences

Preferences for any of the levels, member, user, or address, can be entirely
deleted.

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences', {
... 'preferred_language': 'ja',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences')
acknowledge_posts: True
http_etag: "..."
preferred_language: ja
self_link: http://localhost:9001/3.0/addresses/anne@example.com/preferences

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences', method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/addresses/anne@example.com'
... '/preferences')
http_etag: "..."
self_link: http://localhost:9001/3.0/addresses/anne@example.com/preferences

Combined member preferences

The member resource provides a way to access the set of preference in effect
for a specific subscription. This stacks the preferences, so that a value is
always available. The preference value is looked up first on the member,
falling back to the address, then user, then system preference.

Preferences accessed through this interface are always read only.

>>> dump_json('http://localhost:9001/3.0/members/1/all/preferences')
acknowledge_posts: True
delivery_mode: plaintext_digests
delivery_status: by_user
http_etag: "..."
preferred_language: ja
receive_list_copy: False
receive_own_postings: False
self_link: http://localhost:9001/3.0/members/1/all/preferences

System preferences

The Mailman system itself has a default set of preference. All preference
look ups fall back to these values, which are read-only.

>>> dump_json('http://localhost:9001/3.0/system/preferences')
acknowledge_posts: False
delivery_mode: regular
delivery_status: enabled
hide_address: True
http_etag: "..."
preferred_language: en
receive_list_copy: True
receive_own_postings: True
self_link: http://localhost:9001/3.0/system/preferences

Queues

You can get information about what messages are currently in the Mailman
queues by querying the top-level queues resource. Of course, this
information may be out-of-date by the time you receive a response, since queue
management is asynchronous, but the information will be as current as
possible.

You can get the list of all queue names.

>>> dump_json('http://localhost:9001/3.0/queues')
entry 0:
 count: 0
 directory: .../queue/archive
 files: []
 http_etag: ...
 name: archive
 self_link: http://localhost:9001/3.0/queues/archive
entry 1:
 count: 0
 directory: .../queue/bad
 files: []
 http_etag: ...
 name: bad
 self_link: http://localhost:9001/3.0/queues/bad
entry 2:
 count: 0
 directory: .../queue/bounces
 files: []
 http_etag: ...
 name: bounces
 self_link: http://localhost:9001/3.0/queues/bounces
entry 3:
 count: 0
 directory: .../queue/command
 files: []
 http_etag: ...
 name: command
 self_link: http://localhost:9001/3.0/queues/command
entry 4:
 count: 0
 directory: .../queue/digest
 files: []
 http_etag: ...
 name: digest
 self_link: http://localhost:9001/3.0/queues/digest
entry 5:
 count: 0
 directory: .../queue/in
 files: []
 http_etag: ...
 name: in
 self_link: http://localhost:9001/3.0/queues/in
entry 6:
 count: 0
 directory: .../queue/nntp
 files: []
 http_etag: ...
 name: nntp
 self_link: http://localhost:9001/3.0/queues/nntp
entry 7:
 count: 0
 directory: .../queue/out
 files: []
 http_etag: ...
 name: out
 self_link: http://localhost:9001/3.0/queues/out
entry 8:
 count: 0
 directory: .../queue/pipeline
 files: []
 http_etag: ...
 name: pipeline
 self_link: http://localhost:9001/3.0/queues/pipeline
entry 9:
 count: 0
 directory: .../queue/retry
 files: []
 http_etag: ...
 name: retry
 self_link: http://localhost:9001/3.0/queues/retry
entry 10:
 count: 0
 directory: .../queue/shunt
 files: []
 http_etag: ...
 name: shunt
 self_link: http://localhost:9001/3.0/queues/shunt
entry 11:
 count: 0
 directory: .../queue/virgin
 files: []
 http_etag: ...
 name: virgin
 self_link: http://localhost:9001/3.0/queues/virgin
http_etag: ...
self_link: http://localhost:9001/3.0/queues
start: 0
total_size: 12

Query an individual queue to get a count of, and the list of file base names
in the queue. There are currently no files in the bad queue.

>>> dump_json('http://localhost:9001/3.0/queues/bad')
count: 0
directory: .../queue/bad
files: []
http_etag: ...
name: bad
self_link: http://localhost:9001/3.0/queues/bad

We can inject a message into the bad queue. It must be destined for an
existing mailing list.

>>> dump_json('http://localhost:9001/3.0/lists', {
... 'fqdn_listname': 'ant@example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/lists/ant.example.com
server: WSGIServer/0.2 CPython/...
status: 201

While list creation takes an FQDN list name, injecting a message to the queue
requires a List ID.

>>> dump_json('http://localhost:9001/3.0/queues/bad', {
... 'list_id': 'ant.example.com',
... 'text': """\
... From: anne@example.com
... To: ant@example.com
... Subject: Testing
...
... """})
content-length: 0
date: ...
location: http://localhost:9001/3.0/queues/bad/...
server: ...
status: 201

And now the bad queue has at least one message in it.

>>> dump_json('http://localhost:9001/3.0/queues/bad')
count: 1
directory: .../queue/bad
files: ['...']
http_etag: ...
name: bad
self_link: http://localhost:9001/3.0/queues/bad

We can delete the injected message.

>>> json = call_http('http://localhost:9001/3.0/queues/bad')
>>> len(json['files'])
1
>>> dump_json('http://localhost:9001/3.0/queues/bad/{}'.format(
... json['files'][0]),
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

And now the queue has no files.

>>> dump_json('http://localhost:9001/3.0/queues/bad')
count: 0
directory: .../queue/bad
files: []
http_etag: ...
name: bad
self_link: http://localhost:9001/3.0/queues/bad

Subscription moderation

Subscription (and sometimes unsubscription) requests can similarly be
accepted, discarded, rejected, or deferred by the list moderators.

Viewing subscription requests

A mailing list starts with no pending subscription or unsubscription requests.

>>> ant = create_list('ant@example.com')
>>> ant.admin_immed_notify = False
>>> from mailman.interfaces.mailinglist import SubscriptionPolicy
>>> ant.subscription_policy = SubscriptionPolicy.moderate
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/requests')
http_etag: "..."
start: 0
total_size: 0

When Anne tries to subscribe to the Ant list, her subscription is held for
moderator approval.

>>> from mailman.interfaces.registrar import IRegistrar
>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> registrar = IRegistrar(ant)
>>> manager = getUtility(IUserManager)
>>> anne = manager.create_address('anne@example.com', 'Anne Person')
>>> token, token_owner, member = registrar.register(
... anne, pre_verified=True, pre_confirmed=True)
>>> print(member)
None

The message is being held for moderator approval.

>>> print(token_owner.name)
moderator

The subscription request can be viewed in the REST API.

>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/requests')
entry 0:
 display_name: Anne Person
 email: anne@example.com
 http_etag: "..."
 list_id: ant.example.com
 token: ...
 token_owner: moderator
 when: 2005-08-01T07:49:23
http_etag: "..."
start: 0
total_size: 1

Viewing individual requests

You can view an individual membership change request by providing the token
(a.k.a. request id). Anne’s subscription request looks like this.

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/'
... 'requests/{}'.format(token))
display_name: Anne Person
email: anne@example.com
http_etag: "..."
list_id: ant.example.com
token: ...
token_owner: moderator
when: 2005-08-01T07:49:23

Disposing of subscription requests

Moderators can dispose of held subscription requests by POSTing back to the
request’s resource. The POST data requires an action of one of the following:

	discard - throw the request away.

	
	reject - the request is denied and a notification is sent to the email

	address requesting the membership change.

	defer - defer any action on this membership change (continue to hold it).

	accept - accept the membership change.

Anne’s subscription request is accepted.

>>> dump_json('http://localhost:9001/3.0/lists/'
... 'ant@example.com/requests/{}'.format(token),
... {'action': 'accept'})
content-length: 0
date: ...
server: ...
status: 204

Anne is now a member of the mailing list.

>>> ant.members.get_member('anne@example.com')
<Member: Anne Person <anne@example.com> on ant@example.com
 as MemberRole.member>

There are no more membership change requests.

>>> dump_json('http://localhost:9001/3.0/lists/ant@example.com/requests')
http_etag: "..."
start: 0
total_size: 0

System configuration

The entire system configuration is available through the REST API. You can
get a list of all defined sections.

>>> dump_json('http://localhost:9001/3.0/system/configuration')
http_etag: ...
sections: ['antispam', 'archiver.mail_archive', 'archiver.master', ...

You can also get all the values for a particular section.

>>> dump_json('http://localhost:9001/3.0/system/configuration/mailman')
default_language: en
email_commands_max_lines: 10
filtered_messages_are_preservable: no
html_to_plain_text_command: /usr/bin/lynx -dump $filename
http_etag: ...
layout: testing
noreply_address: noreply
pending_request_life: 3d
post_hook:
pre_hook:
sender_headers: from from_ reply-to sender
site_owner: noreply@example.com

Dotted section names work too, for example, to get the French language
settings section.

>>> dump_json('http://localhost:9001/3.0/system/configuration/language.fr')
charset: iso-8859-1
description: French
enabled: yes
http_etag: ...

Users

The REST API can be used to add and remove users, add and remove user
addresses, and change their preferred address, password, or name. The API can
also be used to verify a user’s password.

Users are different than members; the latter represents an email address
subscribed to a specific mailing list. Users are just people that Mailman
knows about.

There are no users yet.

>>> dump_json('http://localhost:9001/3.0/users')
http_etag: "..."
start: 0
total_size: 0

Anne is added, with an email address. Her user record gets a user_id.

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)
>>> anne = user_manager.create_user('anne@example.com', 'Anne Person')
>>> transaction.commit()
>>> int(anne.user_id.int)
1

Anne’s user record is returned as an entry into the collection of all users.

>>> dump_json('http://localhost:9001/3.0/users')
entry 0:
 created_on: 2005-08-01T07:49:23
 display_name: Anne Person
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
http_etag: "..."
start: 0
total_size: 1

A user might not have a display name, in which case, the attribute will not be
returned in the REST API.

>>> bart = user_manager.create_user('bart@example.com')
>>> transaction.commit()
>>> dump_json('http://localhost:9001/3.0/users')
entry 0:
 created_on: 2005-08-01T07:49:23
 display_name: Anne Person
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
entry 1:
 created_on: 2005-08-01T07:49:23
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/2
 user_id: 2
http_etag: "..."
start: 0
total_size: 2

Paginating over user records

Instead of returning all the user records at once, it’s possible to return
them in pages by adding the GET parameters count and page to the
request URI. Page 1 is the first page and count defines the size of the
page.

>>> dump_json('http://localhost:9001/3.0/users?count=1&page=1')
entry 0:
 created_on: 2005-08-01T07:49:23
 display_name: Anne Person
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/1
 user_id: 1
http_etag: "..."
start: 0
total_size: 2

>>> dump_json('http://localhost:9001/3.0/users?count=1&page=2')
entry 0:
 created_on: 2005-08-01T07:49:23
 http_etag: "..."
 is_server_owner: False
 self_link: http://localhost:9001/3.0/users/2
 user_id: 2
http_etag: "..."
start: 1
total_size: 2

Creating users

New users can be created by POSTing to the users collection. At a minimum,
the user’s email address must be provided.

>>> dump_json('http://localhost:9001/3.0/users', {
... 'email': 'cris@example.com',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/3
server: ...
status: 201

Cris is now a user known to the system, but he has no display name.

>>> user_manager.get_user('cris@example.com')
<User "" (3) at ...>

Cris’s user record can also be accessed via the REST API, using her user id.
Note that because no password was given when the record was created, a random
one was assigned to her.

>>> dump_json('http://localhost:9001/3.0/users/3')
created_on: 2005-08-01T07:49:23
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/3
user_id: 3

Because email addresses just have an @ sign in then, there’s no confusing
them with user ids. Thus, Cris’s record can be retrieved via her email
address.

>>> dump_json('http://localhost:9001/3.0/users/cris@example.com')
created_on: 2005-08-01T07:49:23
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/3
user_id: 3

Providing a display name

When a user is added, a display name can be provided.

>>> transaction.abort()
>>> dump_json('http://localhost:9001/3.0/users', {
... 'email': 'dave@example.com',
... 'display_name': 'Dave Person',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/4
server: ...
status: 201

Dave’s user record includes his display name.

>>> dump_json('http://localhost:9001/3.0/users/4')
created_on: 2005-08-01T07:49:23
display_name: Dave Person
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/4
user_id: 4

Providing passwords

To avoid getting assigned a random, and irretrievable password (but one which
can be reset), you can provide a password when the user is created. By
default, the password is provided in plain text, and it is hashed by Mailman
before being stored.

>>> transaction.abort()
>>> dump_json('http://localhost:9001/3.0/users', {
... 'email': 'elly@example.com',
... 'display_name': 'Elly Person',
... 'password': 'supersekrit',
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/5
server: ...
status: 201

When we view Elly’s user record, we can tell that her password has been hashed
because it has the hash algorithm prefix (i.e. the {plaintext} marker).

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: False
password: {plaintext}supersekrit
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Updating users

Dave’s display name can be changed through the REST API.

>>> dump_json('http://localhost:9001/3.0/users/4', {
... 'display_name': 'David Person',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

Dave’s display name has been updated.

>>> dump_json('http://localhost:9001/3.0/users/dave@example.com')
created_on: 2005-08-01T07:49:23
display_name: David Person
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/4
user_id: 4

Dave can also be assigned a new password by providing in the new cleartext
password. Mailman will hash this before it is stored internally.

>>> dump_json('http://localhost:9001/3.0/users/4', {
... 'cleartext_password': 'clockwork angels',
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

As described above, even though you see {plaintext}clockwork angels below,
it has still been hashed before storage. The default hashing algorithm for
the test suite is a plain text hash, but you can see that it works by the
addition of the algorithm prefix.

>>> dump_json('http://localhost:9001/3.0/users/4')
created_on: 2005-08-01T07:49:23
display_name: David Person
http_etag: "..."
is_server_owner: False
password: {plaintext}clockwork angels
self_link: http://localhost:9001/3.0/users/4
user_id: 4

You can change both the display name and the password by PUTing the full
resource.

>>> dump_json('http://localhost:9001/3.0/users/4', {
... 'cleartext_password': 'the garden',
... 'display_name': 'David Personhood',
... 'is_server_owner': False,
... }, method='PUT')
content-length: 0
date: ...
server: ...
status: 204

Dave’s user record has been updated.

>>> dump_json('http://localhost:9001/3.0/users/dave@example.com')
created_on: 2005-08-01T07:49:23
display_name: David Personhood
http_etag: "..."
is_server_owner: False
password: {plaintext}the garden
self_link: http://localhost:9001/3.0/users/4
user_id: 4

Deleting users via the API

Users can also be deleted via the API.

>>> dump_json('http://localhost:9001/3.0/users/cris@example.com',
... method='DELETE')
content-length: 0
date: ...
server: ...
status: 204

User addresses

Fred may have any number of email addresses associated with his user account,
and we can find them all through the API.

Through some other means, Fred registers a bunch of email addresses and
associates them with his user account.

>>> fred = user_manager.create_user('fred@example.com', 'Fred Person')
>>> fred.register('fperson@example.com')
<Address: fperson@example.com [not verified] at ...>
>>> fred.register('fred.person@example.com')
<Address: fred.person@example.com [not verified] at ...>
>>> fred.register('Fred.Q.Person@example.com')
<Address: Fred.Q.Person@example.com [not verified]
 key: fred.q.person@example.com at ...>
>>> transaction.commit()

When we access Fred’s addresses via the REST API, they are sorted in lexical
order by original (i.e. case-preserved) email address.

>>> dump_json('http://localhost:9001/3.0/users/fred@example.com/addresses')
entry 0:
 email: fred.q.person@example.com
 http_etag: "..."
 original_email: Fred.Q.Person@example.com
 registered_on: 2005-08-01T07:49:23
 self_link:
 http://localhost:9001/3.0/addresses/fred.q.person@example.com
 user: http://localhost:9001/3.0/users/6
entry 1:
 email: fperson@example.com
 http_etag: "..."
 original_email: fperson@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/fperson@example.com
 user: http://localhost:9001/3.0/users/6
entry 2:
 email: fred.person@example.com
 http_etag: "..."
 original_email: fred.person@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/fred.person@example.com
 user: http://localhost:9001/3.0/users/6
entry 3:
 display_name: Fred Person
 email: fred@example.com
 http_etag: "..."
 original_email: fred@example.com
 registered_on: 2005-08-01T07:49:23
 self_link: http://localhost:9001/3.0/addresses/fred@example.com
 user: http://localhost:9001/3.0/users/6
http_etag: "..."
start: 0
total_size: 4

In fact, since these are all associated with Fred’s user account, any of the
addresses can be used to look up Fred’s user record.

>>> dump_json('http://localhost:9001/3.0/users/fred@example.com')
created_on: 2005-08-01T07:49:23
display_name: Fred Person
http_etag: "..."
is_server_owner: False
self_link: http://localhost:9001/3.0/users/6
user_id: 6

>>> dump_json('http://localhost:9001/3.0/users/fred.person@example.com')
created_on: 2005-08-01T07:49:23
display_name: Fred Person
http_etag: "..."
is_server_owner: False
self_link: http://localhost:9001/3.0/users/6
user_id: 6

>>> dump_json('http://localhost:9001/3.0/users/fperson@example.com')
created_on: 2005-08-01T07:49:23
display_name: Fred Person
http_etag: "..."
is_server_owner: False
self_link: http://localhost:9001/3.0/users/6
user_id: 6

>>> dump_json('http://localhost:9001/3.0/users/Fred.Q.Person@example.com')
created_on: 2005-08-01T07:49:23
display_name: Fred Person
http_etag: "..."
is_server_owner: False
self_link: http://localhost:9001/3.0/users/6
user_id: 6

Verifying passwords

A user’s password is stored internally in hashed form. Logging in a user is
the process of verifying a provided clear text password against the hashed
internal password.

When Elly was added as a user, she provided a password in the clear. Now the
password is hashed and getting her user record returns the hashed password.

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: False
password: {plaintext}supersekrit
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Unless the client can run the hashing algorithm on the login text that Elly
provided, and do its own comparison, the client should let the REST API handle
password verification.

This time, Elly successfully logs into Mailman.

>>> dump_json('http://localhost:9001/3.0/users/5/login', {
... 'cleartext_password': 'supersekrit',
... }, method='POST')
content-length: 0
date: ...
server: ...
status: 204

Server owners

Users can be designated as server owners. Elly is not currently a server
owner.

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: False
password: {plaintext}supersekrit
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Let’s make her a server owner.

>>> dump_json('http://localhost:9001/3.0/users/5', {
... 'is_server_owner': True,
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: True
password: {plaintext}supersekrit
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Elly later retires as server owner.

>>> dump_json('http://localhost:9001/3.0/users/5', {
... 'is_server_owner': False,
... }, method='PATCH')
content-length: 0
date: ...
server: ...
status: 204

>>> dump_json('http://localhost:9001/3.0/users/5')
created_on: 2005-08-01T07:49:23
display_name: Elly Person
http_etag: "..."
is_server_owner: False
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/5
user_id: 5

Gwen, a new users, takes over as a server owner.

>>> dump_json('http://localhost:9001/3.0/users', {
... 'display_name': 'Gwen Person',
... 'email': 'gwen@example.com',
... 'is_server_owner': True,
... })
content-length: 0
date: ...
location: http://localhost:9001/3.0/users/7
server: ...
status: 201

>>> dump_json('http://localhost:9001/3.0/users/7')
created_on: 2005-08-01T07:49:23
display_name: Gwen Person
http_etag: "..."
is_server_owner: True
password: {plaintext}...
self_link: http://localhost:9001/3.0/users/7
user_id: 7

Administrivia

The administrivia rule matches when the message contains some common email
commands in the Subject: header or first few lines of the payload. This
is used to catch messages posted to the list which should have been sent to
the -request robot address.

>>> mlist = create_list('_xtest@example.com')
>>> mlist.administrivia = True
>>> rule = config.rules['administrivia']
>>> print(rule.name)
administrivia

For example, if the Subject: header contains the word unsubscribe, the
rule matches.

>>> msg_1 = message_from_string("""\
... From: aperson@example.com
... Subject: unsubscribe
...
... """)
>>> rule.check(mlist, msg_1, {})
True

Similarly, if the body of the message contains the word subscribe in the
first few lines of text, the rule matches.

>>> msg_2 = message_from_string("""\
... From: aperson@example.com
... Subject: I wish to join your list
...
... subscribe
... """)
>>> rule.check(mlist, msg_2, {})
True

In both cases, administrivia checking can be disabled.

>>> mlist.administrivia = False
>>> rule.check(mlist, msg_1, {})
False
>>> rule.check(mlist, msg_2, {})
False

To make the administrivia heuristics a little more robust, the rule actually
looks for a minimum and maximum number of arguments, so that it really does
seem like a mis-addressed email command. In this case, the confirm
command requires at least one argument. We don’t give that here so the rule
will not match.

>>> mlist.administrivia = True
>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: confirm
...
... """)
>>> rule.check(mlist, msg, {})
False

But a real confirm message will match.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: confirm 12345
...
... """)
>>> rule.check(mlist, msg, {})
True

We don’t show all the other possible email commands, but you get the idea.

Non-administrivia

Of course, messages that don’t contain administrivia, don’t match the rule.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: examine
...
... persuade
... """)
>>> rule.check(mlist, msg, {})
False

Also, only text/plain parts are checked for administrivia, so any email
commands in other content type subparts are ignored.

>>> msg = message_from_string("""\
... From: aperson@example.com
... Subject: some administrivia
... Content-Type: text/x-special
...
... subscribe
... """)
>>> rule.check(mlist, msg, {})
False

Pre-approved postings

Messages can contain a pre-approval, which is used to bypass the normal
message approval queue. This has several use cases:

	A list administrator can send an emergency message to the mailing list
from an unregistered address, for example if they are away from their
normal email.

	An automated script can be programmed to send a message to an otherwise
moderated list.

In order to support this, a mailing list can be given a moderator password
which is shared among all the administrators.

>>> mlist = create_list('test@example.com')

This password will not be stored in clear text, so it must be hashed using the
configured hash protocol.

>>> mlist.moderator_password = config.password_context.encrypt(
... 'super secret')

The approved rule determines whether the message contains the proper
approval or not.

>>> rule = config.rules['approved']
>>> print(rule.name)
approved

No approval

The preferred header to check for approval is Approved:. If the message
does not have this header, the rule will not match.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... An important message.
... """)
>>> rule.check(mlist, msg, {})
False

If the rule has an Approved header, but the value of this header does not
match the moderator password, the rule will not match. Note that the header
must contain the clear text version of the password.

>>> msg['Approved'] = 'not the password'
>>> rule.check(mlist, msg, {})
False

The message is approved

By adding an Approved header with a matching password, the rule will
match.

>>> del msg['approved']
>>> msg['Approved'] = 'super secret'
>>> rule.check(mlist, msg, {})
True

Alternative headers

Other headers can be used to stash the moderator password. This rule also
checks the Approve header.

>>> del msg['approved']
>>> msg['Approve'] = 'super secret'
>>> rule.check(mlist, msg, {})
True

Similarly, an X-Approved header can be used.

>>> del msg['approve']
>>> msg['X-Approved'] = 'super secret'
>>> rule.check(mlist, msg, {})
True

And finally, an X-Approve header can be used.

>>> del msg['x-approved']
>>> msg['X-Approve'] = 'super secret'
>>> rule.check(mlist, msg, {})
True

Removal of header

Technically, rules should not have side-effects, however this rule does remove
the Approved header (LP: #973790) when it matches.

>>> del msg['x-approved']
>>> msg['Approved'] = 'super secret'
>>> rule.check(mlist, msg, {})
True
>>> print(msg['approved'])
None

It also removes the header when it doesn’t match. If the rule didn’t do this,
then the mailing list could be probed for its moderator password.

>>> msg['Approved'] = 'not the password'
>>> rule.check(mlist, msg, {})
False
>>> print(msg['approved'])
None

Using a pseudo-header

Mail programs have varying degrees to which they support custom headers like
Approved:. For this reason, Mailman also supports using a
pseudo-header, which is really just the first non-whitespace line in the
payload of the message. If this pseudo-header looks like a matching
Approved: header, the message is similarly allowed to pass.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... Approved: super secret
... An important message.
... """)
>>> rule.check(mlist, msg, {})
True

The pseudo-header is always removed from the body of plain text messages.

>>> print(msg.as_string())
From: aperson@example.com
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
<BLANKLINE>
An important message.
<BLANKLINE>

As before, a mismatch in the pseudo-header does not approve the message, but
the pseudo-header line is still removed.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... Approved: not the password
... An important message.
... """)
>>> rule.check(mlist, msg, {})
False

>>> print(msg.as_string())
From: aperson@example.com
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"

An important message.

MIME multipart support

Mailman searches for the pseudo-header as the first non-whitespace line in the
first text/plain message part of the message. This allows the feature to
be used with MIME documents.

>>> msg = message_from_string("""\
... From: aperson@example.com
... MIME-Version: 1.0
... Content-Type: multipart/mixed; boundary="AAA"
...
... --AAA
... Content-Type: application/x-ignore
...
... Approved: not the password
... The above line will be ignored.
...
... --AAA
... Content-Type: text/plain
...
... Approved: super secret
... An important message.
... --AAA--
... """)
>>> rule.check(mlist, msg, {})
True

Like before, the pseudo-header is removed, but only from the text parts.

>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="AAA"
<BLANKLINE>
--AAA
Content-Type: application/x-ignore
<BLANKLINE>
Approved: not the password
The above line will be ignored.
<BLANKLINE>
--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
<BLANKLINE>
An important message.
--AAA--
<BLANKLINE>

If the correct password is in the non-text/plain part, it is ignored.

>>> msg = message_from_string("""\
... From: aperson@example.com
... MIME-Version: 1.0
... Content-Type: multipart/mixed; boundary="AAA"
...
... --AAA
... Content-Type: application/x-ignore
...
... Approved: super secret
... The above line will be ignored.
...
... --AAA
... Content-Type: text/plain
...
... Approved: not the password
... An important message.
... --AAA--
... """)
>>> rule.check(mlist, msg, {})
False

Pseudo-header is still stripped, but only from the text/plain part.

>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="AAA"
<BLANKLINE>
--AAA
Content-Type: application/x-ignore
<BLANKLINE>
Approved: super secret
The above line will be ignored.
<BLANKLINE>
--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
<BLANKLINE>
An important message.
--AAA--

Stripping text/html parts

Because some mail programs will include both a text/plain part and a
text/html alternative, the rule must search the alternatives and strip
anything that looks like an Approved: header.

>>> msg = message_from_string("""\
... From: aperson@example.com
... MIME-Version: 1.0
... Content-Type: multipart/mixed; boundary="AAA"
...
... --AAA
... Content-Type: text/html
...
... <html>
... <head></head>
... <body>
... Approved: super secret
... <p>The above line will be ignored.
... </body>
... </html>
...
... --AAA
... Content-Type: text/plain
...
... Approved: super secret
... An important message.
... --AAA--
... """)
>>> rule.check(mlist, msg, {})
True

And the header-like text in the text/html part was stripped.

>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="AAA"
<BLANKLINE>
--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/html; charset="us-ascii"
<BLANKLINE>
<html>
<head></head>
<body>

<p>The above line will be ignored.
</body>
</html>
<BLANKLINE>
--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
<BLANKLINE>
An important message.
--AAA--
<BLANKLINE>

This is true even if the rule does not match (i.e. the incorrect password was
given).

>>> msg = message_from_string("""\
... From: aperson@example.com
... MIME-Version: 1.0
... Content-Type: multipart/mixed; boundary="AAA"
...
... --AAA
... Content-Type: text/html
...
... <html>
... <head></head>
... <body>
... Approved: not the password
... <p>The above line will be ignored.
... </body>
... </html>
...
... --AAA
... Content-Type: text/plain
...
... Approved: not the password
... An important message.
... --AAA--
... """)
>>> rule.check(mlist, msg, {})
False

>>> print(msg.as_string())
From: aperson@example.com
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="AAA"

--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/html; charset="us-ascii"

<html>
<head></head>
<body>

<p>The above line will be ignored.
</body>
</html>

--AAA
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"

An important message.
--AAA--

Emergency

When the mailing list has its emergency flag set, all messages posted to the
list are held for moderator approval.

>>> mlist = create_list('test@example.com')
>>> rule = config.rules['emergency']
>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... An important message.
... """)

By default, the mailing list does not have its emergency flag set.

>>> mlist.emergency
False
>>> rule.check(mlist, msg, {})
False

The emergency rule matches if the flag is set on the mailing list.

>>> mlist.emergency = True
>>> rule.check(mlist, msg, {})
True

However, if the message metadata has a moderator_approved key set, then
even if the mailing list has its emergency flag set, the message still goes
through to the membership.

>>> rule.check(mlist, msg, dict(moderator_approved=True))
False

Header matching

Mailman can do pattern based header matching during its normal rule
processing. There is a set of site-wide default header matches specified in
the configuration file under the [antispam] section.

>>> mlist = create_list('test@example.com')

In this section, the variable header_checks contains a list of the headers
to check, and the patterns to check them against. By default, this list is
empty.

It is also possible to programmatically extend these header checks. Here,
we’ll extend the checks with a pattern that matches 4 or more stars.

>>> chain = config.chains['header-match']
>>> chain.extend('x-spam-score', '[*]{4,}')

First, if the message has no X-Spam-Score: header, the message passes
through the chain with no matches.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: Not spam
... Message-ID: <ant>
...
... This is a message.
... """)

By looking at the message metadata after chain processing, we can see that
none of the rules matched.

>>> from mailman.core.chains import process
>>> msgdata = {}
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
No rules hit
Rule misses:
 x-spam-score: [*]{4,}

The header may exist but does not match the pattern.

>>> msg['X-Spam-Score'] = '***'
>>> msgdata = {}
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
No rules hit
Rule misses:
 x-spam-score: [*]{4,}

The header may exist and match the pattern. By default, when the header
matches, it gets held for moderator approval.

>>> from mailman.interfaces.chain import ChainEvent
>>> from mailman.testing.helpers import event_subscribers
>>> def handler(event):
... if isinstance(event, ChainEvent):
... print(event.__class__.__name__,
... event.chain.name, event.msg['message-id'])

>>> del msg['x-spam-score']
>>> msg['X-Spam-Score'] = '*****'
>>> msgdata = {}
>>> with event_subscribers(handler):
... process(mlist, msg, msgdata, 'header-match')
HoldEvent hold <ant>

>>> hits_and_misses(msgdata)
Rule hits:
 x-spam-score: [*]{4,}
No rules missed

The configuration file can also specify a different final disposition for
messages that match their header checks. For example, we may just want to
discard such messages.

>>> from mailman.testing.helpers import configuration
>>> msgdata = {}
>>> with event_subscribers(handler):
... with configuration('antispam', jump_chain='discard'):
... process(mlist, msg, msgdata, 'header-match')
DiscardEvent discard <ant>

These programmatically added headers can be removed by flushing the chain.
Now, nothing with match this message.

>>> chain.flush()
>>> msgdata = {}
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
No rules hit
No rules missed

List-specific header matching

Each mailing list can also be configured with a set of header matching regular
expression rules. These are used to impose list-specific header filtering
with the same semantics as the global [antispam] section.

The list administrator wants to match not on four stars, but on three plus
signs, but only for the current mailing list.

>>> mlist.header_matches = [('x-spam-score', '[+]{3,}')]

A message with a spam score of two pluses does not match.

>>> msgdata = {}
>>> del msg['x-spam-score']
>>> msg['X-Spam-Score'] = '++'
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
No rules hit
Rule misses:
 x-spam-score: [+]{3,}

But a message with a spam score of three pluses does match. Because a message
with the previous Message-Id is already in the moderation queue, we need to
give this message a new Message-Id.

>>> msgdata = {}
>>> del msg['x-spam-score']
>>> msg['X-Spam-Score'] = '+++'
>>> del msg['message-id']
>>> msg['Message-Id'] = '<bee>'
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
Rule hits:
 x-spam-score: [+]{3,}
No rules missed

As does a message with a spam score of four pluses.

>>> msgdata = {}
>>> del msg['x-spam-score']
>>> msg['X-Spam-Score'] = '++++'
>>> del msg['message-id']
>>> msg['Message-Id'] = '<cat>'
>>> process(mlist, msg, msgdata, 'header-match')
>>> hits_and_misses(msgdata)
Rule hits:
 x-spam-score: [+]{3,}
No rules missed

Implicit destination

The implicit-dest rule matches when the mailing list’s posting address is
not explicitly mentioned in the set of message recipients.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['implicit-dest']
>>> print(rule.name)
implicit-dest

In order to check for implicit destinations, we need to adapt the mailing list
to the appropriate interface.

>>> from mailman.interfaces.mailinglist import IAcceptableAliasSet
>>> alias_set = IAcceptableAliasSet(mlist)

This rule matches messages that have an implicit destination, meaning that the
mailing list’s posting address isn’t included in the explicit recipients.

>>> mlist.require_explicit_destination = True
>>> alias_set.clear()

>>> msg = message_from_string("""\
... From: aperson@example.org
... Subject: An implicit message
...
... """)
>>> rule.check(mlist, msg, {})
True

You can disable implicit destination checks for the mailing list.

>>> mlist.require_explicit_destination = False
>>> rule.check(mlist, msg, {})
False

Even with some recipients, if the posting address is not included, the rule
will match.

>>> mlist.require_explicit_destination = True
>>> msg['To'] = 'myfriend@example.com'
>>> rule.check(mlist, msg, {})
True

Add the posting address as a recipient and the rule will no longer match.

>>> msg['Cc'] = '_xtest@example.com'
>>> rule.check(mlist, msg, {})
False

Alternatively, if one of the acceptable aliases is in the recipients list,
then the rule will not match.

>>> del msg['cc']
>>> rule.check(mlist, msg, {})
True

>>> alias_set.add('myfriend@example.com')
>>> rule.check(mlist, msg, {})
False

A message gated from NNTP will obviously have an implicit destination. Such
gated messages will not be held for implicit destination because it’s assumed
that Mailman pulled it from the appropriate news group.

>>> rule.check(mlist, msg, dict(from_usenet=True))
False

Additional aliases can be added.

>>> alias_set.add('other@example.com')
>>> del msg['to']
>>> rule.check(mlist, msg, {})
True

>>> msg['To'] = 'other@example.com'
>>> rule.check(mlist, msg, {})
False

Aliases can be removed.

>>> alias_set.remove('other@example.com')
>>> rule.check(mlist, msg, {})
True

Aliases can also be cleared.

>>> msg['Cc'] = 'myfriend@example.com'
>>> rule.check(mlist, msg, {})
False

>>> alias_set.clear()
>>> rule.check(mlist, msg, {})
True

Alias patterns

It’s also possible to specify an alias pattern, i.e. a regular expression to
match against the recipients. For example, we can say that if there is a
recipient in the example.net domain, then the rule does not match.

>>> alias_set.add('^.*@example.net')
>>> rule.check(mlist, msg, {})
True

>>> msg['To'] = 'you@example.net'
>>> rule.check(mlist, msg, {})
False

Bad aliases

You cannot add an alias that looks like neither a pattern nor an email
address.

>>> alias_set.add('foobar')
Traceback (most recent call last):
...
ValueError: foobar

Posting loops

To avoid a posting loop, Mailman has a rule to check for the existence of an
RFC 2369 List-Post: header with the value of the list’s posting address.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['loop']
>>> print(rule.name)
loop

The header could be missing, in which case the rule does not match.

>>> msg = message_from_string("""\
... From: aperson@example.com
...
... An important message.
... """)
>>> rule.check(mlist, msg, {})
False

The header could be present, but not match the list’s posting address.

>>> msg['List-Post'] = 'not-this-list@example.com'
>>> rule.check(mlist, msg, {})
False

If the header is present and does match the posting address, the rule
matches.

>>> del msg['list-post']
>>> msg['List-Post'] = mlist.posting_address
>>> rule.check(mlist, msg, {})
True

Even if there are multiple List-Post: headers, as long as one with the
posting address exists, the rule matches.

>>> msg = message_from_string("""\
... From: aperson@example.com
... List-Post: not-this-list@example.com
... List-Post: _xtest@example.com
... List-Post: foo@example.com
...
... An important message.
... """)
>>> rule.check(mlist, msg, {})
True

Message size

The message-size rule matches when the posted message is bigger than a
specified maximum. Generally this is used to prevent huge attachments from
getting posted to the list. This value is calculated in terms of KB (1024
bytes).

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['max-size']
>>> print(rule.name)
max-size

For example, setting the maximum message size to 1 means that any message
bigger than that will match the rule.

>>> mlist.max_message_size = 1 # 1024 bytes
>>> one_line = 'x' * 79
>>> big_body = '\n'.join([one_line] * 15)
>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com
...
... """ + big_body)
>>> rule.check(mlist, msg, {})
True

Setting the maximum message size to zero means no size check is performed.

>>> mlist.max_message_size = 0
>>> rule.check(mlist, msg, {})
False

Of course, if the maximum size is larger than the message’s size, then it’s
still okay.

>>> mlist.max_message_size = msg.original_size/1024.0 + 1
>>> rule.check(mlist, msg, {})
False

Moderation

All members and nonmembers have a moderation action. When the action is not
defer, the moderation rule flags the message as needing moderation. This
might be to automatically accept, discard, reject, or hold the message.

Two separate rules check for member and nonmember moderation. Member
moderation happens early in the built-in chain, while nonmember moderation
happens later in the chain, after normal moderation checks.

>>> mlist = create_list('test@example.com')

Member moderation

>>> member_rule = config.rules['member-moderation']
>>> print(member_rule.name)
member-moderation

Anne, a mailing list member, sends a message to the mailing list. Her
postings are not moderated.

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist, 'Anne')
<Member: Anne Person <aperson@example.com> on test@example.com
 as MemberRole.member>

>>> member = mlist.members.get_member('aperson@example.com')
>>> print(member.moderation_action)
Action.defer

Because Anne is not moderated, the member moderation rule does not match.

>>> member_msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: A posted message
...
... """)
>>> member_rule.check(mlist, member_msg, {})
False

Once the member’s moderation action is set to something other than defer,
the rule matches. Also, the message metadata has a few extra pieces of
information for the eventual moderation chain.

>>> from mailman.interfaces.action import Action
>>> member.moderation_action = Action.hold
>>> msgdata = {}
>>> member_rule.check(mlist, member_msg, msgdata)
True
>>> dump_msgdata(msgdata)
moderation_action: hold
moderation_sender: aperson@example.com

Nonmembers

Nonmembers are handled in a similar way, although by default, nonmember
postings are held for moderator approval.

>>> nonmember_rule = config.rules['nonmember-moderation']
>>> print(nonmember_rule.name)
nonmember-moderation

Bart, who is not a member of the mailing list, sends a message to the list.

>>> from mailman.interfaces.member import MemberRole
>>> subscribe(mlist, 'Bart', MemberRole.nonmember)
<Member: Bart Person <bperson@example.com> on test@example.com
 as MemberRole.nonmember>

>>> nonmember = mlist.nonmembers.get_member('bperson@example.com')
>>> print(nonmember.moderation_action)
Action.hold

When Bart is registered as a nonmember of the list, his moderation action is
set to hold by default. Thus the rule matches and the message metadata again
carries some useful information.

>>> nonmember_msg = message_from_string("""\
... From: bperson@example.com
... To: test@example.com
... Subject: A posted message
...
... """)
>>> msgdata = {}
>>> nonmember_rule.check(mlist, nonmember_msg, msgdata)
True
>>> dump_msgdata(msgdata)
moderation_action: hold
moderation_sender: bperson@example.com

Of course, the nonmember action can be set to defer the decision, in which
case the rule does not match.

>>> nonmember.moderation_action = Action.defer
>>> nonmember_rule.check(mlist, nonmember_msg, {})
False

Unregistered nonmembers

The incoming runner ensures that all sender addresses are registered in the
system, but it is the moderation rule that subscribes nonmember addresses to
the mailing list if they are not already subscribed.

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> address = getUtility(IUserManager).create_address(
... 'cperson@example.com')
>>> address
<Address: cperson@example.com [not verified] at ...>

>>> msg = message_from_string("""\
... From: cperson@example.com
... To: test@example.com
... Subject: A posted message
...
... """)

cperson is neither a member, nor a nonmember of the mailing list.

>>> def memberkey(member):
... return member.mailing_list, member.address.email, member.role.value

>>> dump_list(mlist.members.members, key=memberkey)
<Member: Anne Person <aperson@example.com>
 on test@example.com as MemberRole.member>
>>> dump_list(mlist.nonmembers.members, key=memberkey)
<Member: Bart Person <bperson@example.com>
 on test@example.com as MemberRole.nonmember>

However, when the nonmember moderation rule runs, it adds the cperson as a
nonmember of the list. The rule also matches.

>>> msgdata = {}
>>> nonmember_rule.check(mlist, msg, msgdata)
True
>>> dump_msgdata(msgdata)
moderation_action: hold
moderation_sender: cperson@example.com

>>> dump_list(mlist.members.members, key=memberkey)
<Member: Anne Person <aperson@example.com>
 on test@example.com as MemberRole.member>
>>> dump_list(mlist.nonmembers.members, key=memberkey)
<Member: Bart Person <bperson@example.com>
 on test@example.com as MemberRole.nonmember>
<Member: cperson@example.com
 on test@example.com as MemberRole.nonmember>

Cross-membership checks

Of course, the member moderation rule does not match for nonmembers…

>>> member_rule.check(mlist, nonmember_msg, {})
False
>>> nonmember_rule.check(mlist, member_msg, {})
False

Newsgroup moderation

The news-moderation rule matches all messages posted to mailing lists that
gateway to a moderated newsgroup. The reason for this is that such messages
must get forwarded on to the newsgroup moderator. From there it will get
posted to the newsgroup, and from there, gated to the mailing list. It’s a
circuitous route, but it works nonetheless by holding all messages posted
directly to the mailing list.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['news-moderation']
>>> print(rule.name)
news-moderation

Set the list configuration variable to enable newsgroup moderation.

>>> from mailman.interfaces.nntp import NewsgroupModeration
>>> mlist.newsgroup_moderation = NewsgroupModeration.moderated

And now all messages will match the rule.

>>> msg = message_from_string("""\
... From: aperson@example.org
... Subject: An announcement
...
... Great things are happening.
... """)
>>> rule.check(mlist, msg, {})
True

When moderation is turned off, the rule does not match.

>>> mlist.newsgroup_moderation = NewsgroupModeration.none
>>> rule.check(mlist, msg, {})
False

No Subject header

This rule matches if the message has no Subject: header, or if the header
is the empty string when stripped.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['no-subject']
>>> print(rule.name)
no-subject

A message with a non-empty subject does not match the rule.

>>> msg = message_from_string("""\
... From: aperson@example.org
... To: _xtest@example.com
... Subject: A posted message
...
... """)
>>> rule.check(mlist, msg, {})
False

Delete the Subject: header and the rule matches.

>>> del msg['subject']
>>> rule.check(mlist, msg, {})
True

Even a Subject: header with only whitespace still matches the rule.

>>> msg['Subject'] = ' '
>>> rule.check(mlist, msg, {})
True

Maximum number of recipients

This rule matches when there are more than the maximum allowed number of
explicit recipients addressed by the message.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['max-recipients']
>>> print(rule.name)
max-recipients

In this case, we’ll create a message with five recipients. These include all
addresses in the To: and CC: headers.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com, bperson@example.com
... Cc: cperson@example.com
... Cc: dperson@example.com (Dan Person)
... To: Elly Q. Person <eperson@example.com>
...
... Hey folks!
... """)

For backward compatibility, the message must have fewer than the maximum
number of explicit recipients.

>>> mlist.max_num_recipients = 5
>>> rule.check(mlist, msg, {})
True

>>> mlist.max_num_recipients = 6
>>> rule.check(mlist, msg, {})
False

Zero means any number of recipients are allowed.

>>> mlist.max_num_recipients = 0
>>> rule.check(mlist, msg, {})
False

Rules

Rules are applied to each message as part of a rule chain. Individual rules
simply return a boolean specifying whether the rule matches or not. Chain
links determine what happens when a rule matches.

All rules

Rules are maintained in the configuration object as a dictionary mapping rule
names to rule objects.

>>> from zope.interface.verify import verifyObject
>>> from mailman.interfaces.rules import IRule
>>> for rule_name in sorted(config.rules):
... rule = config.rules[rule_name]
... print(rule_name, verifyObject(IRule, rule))
administrivia True
any True
approved True
emergency True
implicit-dest True
loop True
max-recipients True
max-size True
member-moderation True
news-moderation True
no-subject True
nonmember-moderation True
suspicious-header True
truth True

You can get a rule by name.

>>> rule = config.rules['emergency']
>>> verifyObject(IRule, rule)
True

Rule checks

Individual rules can be checked to see if they match, by running the rule’s
check() method. This returns a boolean indicating whether the rule was
matched or not.

>>> mlist = create_list('_xtest@example.com')
>>> msg = message_from_string("""\
... From: aperson@example.com
...
... An important message.
... """)

For example, the emergency rule just checks to see if the emergency flag
is set on the mailing list, and the message has not been pre-approved by the
list administrator.

>>> print(rule.name)
emergency
>>> mlist.emergency = False
>>> rule.check(mlist, msg, {})
False
>>> mlist.emergency = True
>>> rule.check(mlist, msg, {})
True
>>> rule.check(mlist, msg, dict(moderator_approved=True))
False

Suspicious headers

Suspicious headers are a way for Mailman to hold messages that match a
particular regular expression. This mostly historical feature is fairly
confusing to users, and the list attribute that controls this is misnamed.

>>> mlist = create_list('_xtest@example.com')
>>> rule = config.rules['suspicious-header']
>>> print(rule.name)
suspicious-header

Set the so-called suspicious header configuration variable.

>>> mlist.bounce_matching_headers = 'From: .*person@(blah.)?example.com'
>>> msg = message_from_string("""\
... From: aperson@example.com
... To: _xtest@example.com
... Subject: An implicit message
...
... """)
>>> rule.check(mlist, msg, {})
True

But if the header doesn’t match the regular expression, the rule won’t match.
This one comes from a .org address.

>>> msg = message_from_string("""\
... From: aperson@example.org
... To: _xtest@example.com
... Subject: An implicit message
...
... """)
>>> rule.check(mlist, msg, {})
False

Truth

This rule always matches. This makes it useful as a terminus rule for
unconditionally jumping to another chain.

>>> rule = config.rules['truth']
>>> rule.check(False, False, False)
True

Alias Overview

A typical Mailman list exposes nine aliases which point to seven different
wrapped scripts. E.g. for a list named mylist, you’d have:

mylist-bounces -> bounces
mylist-confirm -> confirm
mylist-join -> join (-subscribe is an alias)
mylist-leave -> leave (-unsubscribe is an alias)
mylist-owner -> owner
mylist -> post
mylist-request -> request

-request, -join, and -leave are a robot addresses; their sole
purpose is to process emailed commands, although the latter two are hardcoded
to subscription and unsubscription requests. -bounces is the automated
bounce processor, and all messages to list members have their return address
set to -bounces. If the bounce processor fails to extract a bouncing
member address, it can optionally forward the message on to the list owners.

-owner is for reaching a human operator with minimal list interaction
(i.e. no bounce processing). -confirm is another robot address which
processes replies to VERP-like confirmation notices.

So delivery flow of messages look like this:

joerandom ---> mylist ---> list members
 | |
 | |[bounces]
 | mylist-bounces <---+ <-------------------------------+
 | | |
 | +--->[internal bounce processing] |
 | ^ | |
 | | | [bounce found] |
 | [bounces *] +--->[register and discard] |
			[*]
[list owners]	[no bounce found]		
^			
+-------> mylist-owner <--------+			
data/owner-bounces.mbox <--[site list] <---+			
+-------> mylist-join--+			
+------> mylist-leave--+			
v			
+-------> mylist-request			
+---> [command processor]			
 +-----> mylist-confirm ----> +---> joerandom |
 | |
 |[bounces] |
 +----------------------+

A person can send an email to the list address (for posting), the -owner
address (to reach the human operator), or the -confirm, -join,
-leave, and -request mailbots. Message to the list address are then
forwarded on to the list membership, with bounces directed to the -bounces
address.

[*] Messages sent to the -owner address are forwarded on to the list
owner/moderators. All -owner destined messages have their bounces
directed to the site list -bounces address, regardless of whether a human
sent the message or the message was crafted internally. The intention here is
that the site owners want to be notified when one of their list owners’
addresses starts bouncing (yes, the will be automated in a future release).

Any messages to site owners has their bounces directed to a special loop
killer address, which just dumps the message into
data/owners-bounces.mbox.

Finally, message to any of the mailbots causes the requested action to be
performed. Results notifications are sent to the author of the message, which
all bounces pointing back to the -bounces address.

The command runner

This runner’s purpose is to process and respond to email commands. Commands
are extensible using the Mailman plug-in system, but Mailman comes with a
number of email commands out of the box. These are processed when a message
is sent to the list’s -request address.

>>> mlist = create_list('test@example.com')
>>> mlist.send_welcome_messages = False

A command in the Subject

For example, the echo command simply echoes the original command back to
the sender. The command can be in the Subject header.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test-request@example.com
... Subject: echo hello
... Message-ID: <aardvark>
...
... """)

>>> from mailman.app.inject import inject_message
>>> filebase = inject_message(mlist, msg, switchboard='command')
>>> from mailman.runners.command import CommandRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> command = make_testable_runner(CommandRunner)
>>> command.run()

And now the response is in the virgin queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
From: test-bounces@example.com
To: aperson@example.com
...

The results of your email command are provided below.

- Original message details:
 From: aperson@example.com
 Subject: echo hello
 Date: ...
 Message-ID: <aardvark>

- Results:
echo hello

- Done.

>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : test.example.com
nodecorate : True
recipients : {'aperson@example.com'}
reduced_list_headers: True
version : ...

A command in the body

The command can also be found in the body of the message, as long as the
message is plain text.

>>> msg = message_from_string("""\
... From: bperson@example.com
... To: test-request@example.com
... Message-ID: <bobcat>
...
... echo foo bar
... """)

>>> filebase = inject_message(mlist, msg, switchboard='command')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
From: test-bounces@example.com
To: bperson@example.com
...
Precedence: bulk

The results of your email command are provided below.

- Original message details:
 From: bperson@example.com
 Subject: n/a
 Date: ...
 Message-ID: <bobcat>

- Results:
echo foo bar

- Done.

Implicit commands

For some commands, specifically for joining and leaving a mailing list, there
are email aliases that act like commands, even when there’s nothing else in
the Subject or body. For example, to join a mailing list, a user need
only email the -join address or -subscribe address (the latter is
deprecated).

Because Dirk has never registered with Mailman before, he gets two responses.
The first is a confirmation message so that Dirk can validate his email
address, and the other is the results of his email command.

>>> msg = message_from_string("""\
... From: Dirk Person <dperson@example.com>
... To: test-join@example.com
...
... """)

>>> filebase = inject_message(
... mlist, msg, switchboard='command', subaddress='join')
>>> command.run()
>>> messages = get_queue_messages('virgin', sort_on='subject')
>>> len(messages)
2

>>> from mailman.interfaces.registrar import IRegistrar
>>> registrar = IRegistrar(mlist)
>>> for item in messages:
... subject = item.msg['subject']
... print('Subject:', subject)
... if 'confirm' in str(subject):
... token = str(subject).split()[1].strip()
... new_token, token_owner, member = registrar.confirm(token)
... assert new_token is None, 'Confirmation failed'
Subject: The results of your email commands
Subject: confirm ...

Similarly, to leave a mailing list, the user need only email the -leave or
-unsubscribe address (the latter is deprecated).

>>> msg = message_from_string("""\
... From: dperson@example.com
... To: test-leave@example.com
...
... """)

>>> filebase = inject_message(
... mlist, msg, switchboard='command', subaddress='leave')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
From: test-bounces@example.com
To: dperson@example.com
...

The results of your email command are provided below.

- Original message details:
From: dperson@example.com
Subject: n/a
Date: ...
Message-ID: ...

- Results:
Dirk Person <dperson@example.com> left test@example.com

- Done.

The -confirm address is also available as an implicit command.

>>> msg = message_from_string("""\
... From: dperson@example.com
... To: test-confirm+123@example.com
...
... """)

>>> filebase = inject_message(
... mlist, msg, switchboard='command', subaddress='confirm')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
From: test-bounces@example.com
To: dperson@example.com
...

The results of your email command are provided below.

- Original message details:
From: dperson@example.com
Subject: n/a
Date: ...
Message-ID: ...

- Results:
Confirmation token did not match

- Done.

Stopping command processing

The end command stops email processing, so that nothing following is
looked at by the command queue.

>>> msg = message_from_string("""\
... From: cperson@example.com
... To: test-request@example.com
... Message-ID: <caribou>
...
... echo foo bar
... end ignored
... echo baz qux
... """)

>>> filebase = inject_message(mlist, msg, switchboard='command')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
...

- Results:
echo foo bar

- Unprocessed:
echo baz qux

- Done.

The stop command is an alias for end.

>>> msg = message_from_string("""\
... From: cperson@example.com
... To: test-request@example.com
... Message-ID: <caribou>
...
... echo foo bar
... stop ignored
... echo baz qux
... """)

>>> filebase = inject_message(mlist, msg, switchboard='command')
>>> command.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
1

>>> print(messages[0].msg.as_string())
Subject: The results of your email commands
...

- Results:
echo foo bar

- Unprocessed:
echo baz qux

- Done.

Digesting

Mailman crafts and sends digests by a separate digest runner process. This
starts by a number of messages being posted to the mailing list.

>>> mlist = create_list('test@example.com')
>>> mlist.digest_size_threshold = 0.6
>>> mlist.volume = 1
>>> mlist.next_digest_number = 1
>>> mlist.send_welcome_message = False

>>> from string import Template
>>> process = config.handlers['to-digest'].process

>>> def fill_digest():
... size = 0
... for i in range(1, 5):
... text = Template("""\
... From: aperson@example.com
... To: xtest@example.com
... Subject: Test message $i
... List-Post: <test@example.com>
...
... Here is message $i
... """).substitute(i=i)
... msg = message_from_string(text)
... process(mlist, msg, {})
... size += len(text)
... if size >= mlist.digest_size_threshold * 1024:
... break

>>> fill_digest()

The runner gets kicked off when a marker message gets dropped into the digest
queue. The message metadata points to the mailbox file containing the
messages to put in the digest.

>>> digestq = config.switchboards['digest']
>>> len(digestq.files)
1

>>> from mailman.testing.helpers import get_queue_messages
>>> entry = get_queue_messages('digest')[0]

The marker message is empty.

>>> print(entry.msg.as_string())

But the message metadata has a reference to the digest file.

>>> dump_msgdata(entry.msgdata)
_parsemsg : False
digest_number: 1
digest_path : .../lists/test@example.com/digest.1.1.mmdf
listid : test.example.com
version : 3
volume : 1

There are 4 messages in the digest.

>>> from mailman.utilities.mailbox import Mailbox
>>> sum(1 for item in Mailbox(entry.msgdata['digest_path']))
4

When the runner runs, it processes the digest mailbox, crafting both the plain
text (RFC 1153) digest and the MIME digest.

>>> from mailman.runners.digest import DigestRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> runner = make_testable_runner(DigestRunner)
>>> runner.run()

If there are no members receiving digests, none are sent.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
0

Once some users are subscribed and receiving digests, the digest runner places
both digests into the virgin queue for final delivery.

>>> from mailman.testing.helpers import subscribe
>>> from mailman.interfaces.member import DeliveryMode

>>> anne = subscribe(mlist, 'Anne')
>>> anne.preferences.delivery_mode = DeliveryMode.mime_digests
>>> bart = subscribe(mlist, 'Bart')
>>> bart.preferences.delivery_mode = DeliveryMode.plaintext_digests

>>> fill_digest()
>>> runner.run()
>>> messages = get_queue_messages('virgin')
>>> len(messages)
2

Anne and Bart unsubscribe from the mailing list.

>>> anne.unsubscribe()
>>> bart.unsubscribe()

The MIME digest is a multipart, and the RFC 1153 digest is the other one.

>>> def mime_rfc1153(messages):
... if messages[0].msg.is_multipart():
... return messages[0], messages[1]
... return messages[1], messages[0]

>>> mime, rfc1153 = mime_rfc1153(messages)

The MIME digest has lots of good stuff, all contained in the multipart.

>>> print(mime.msg.as_string())
Content-Type: multipart/mixed; boundary="===============...=="
MIME-Version: 1.0
From: test-request@example.com
Subject: Test Digest, Vol 1, Issue 2
To: test@example.com
Reply-To: test@example.com
Date: ...
Message-ID: ...
<BLANKLINE>
--===============...==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Description: Test Digest, Vol 1, Issue 2
<BLANKLINE>
Send Test mailing list submissions to
 test@example.com
<BLANKLINE>
To subscribe or unsubscribe via the World Wide Web, visit
 http://lists.example.com/listinfo/test@example.com
or, via email, send a message with subject or body 'help' to
 test-request@example.com
<BLANKLINE>
You can reach the person managing the list at
 test-owner@example.com
<BLANKLINE>
When replying, please edit your Subject line so it is more specific
than "Re: Contents of Test digest..."
<BLANKLINE>
--===============...==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Description: Today's Topics (4 messages)
<BLANKLINE>
Today's Topics:
<BLANKLINE>
 1. Test message 1 (aperson@example.com)
 2. Test message 2 (aperson@example.com)
 3. Test message 3 (aperson@example.com)
 4. Test message 4 (aperson@example.com)
<BLANKLINE>
--===============...==
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: xtest@example.com
Subject: Test message 1
List-Post: <test@example.com>
<BLANKLINE>
Here is message 1
<BLANKLINE>
--===============...==
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: xtest@example.com
Subject: Test message 2
List-Post: <test@example.com>
<BLANKLINE>
Here is message 2
<BLANKLINE>
--===============...==
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: xtest@example.com
Subject: Test message 3
List-Post: <test@example.com>
<BLANKLINE>
Here is message 3
<BLANKLINE>
--===============...==
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: xtest@example.com
Subject: Test message 4
List-Post: <test@example.com>
<BLANKLINE>
Here is message 4
<BLANKLINE>
--===============...==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Description: Digest Footer
<BLANKLINE>

Test mailing list
test@example.com
http://lists.example.com/listinfo/test@example.com
<BLANKLINE>
--===============...==--

The RFC 1153 contains the digest in a single plain text message.

>>> print(rfc1153.msg.as_string())
From: test-request@example.com
Subject: Test Digest, Vol 1, Issue 2
To: test@example.com
Reply-To: test@example.com
Date: ...
Message-ID: ...
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
<BLANKLINE>
Send Test mailing list submissions to
 test@example.com
<BLANKLINE>
To subscribe or unsubscribe via the World Wide Web, visit
 http://lists.example.com/listinfo/test@example.com
or, via email, send a message with subject or body 'help' to
 test-request@example.com
<BLANKLINE>
You can reach the person managing the list at
 test-owner@example.com
<BLANKLINE>
When replying, please edit your Subject line so it is more specific
than "Re: Contents of Test digest..."
<BLANKLINE>
Today's Topics:
<BLANKLINE>
 1. Test message 1 (aperson@example.com)
 2. Test message 2 (aperson@example.com)
 3. Test message 3 (aperson@example.com)
 4. Test message 4 (aperson@example.com)
<BLANKLINE>
<BLANKLINE>
--
<BLANKLINE>
From: aperson@example.com
Subject: Test message 1
To: xtest@example.com
<BLANKLINE>
Here is message 1
<BLANKLINE>

<BLANKLINE>
From: aperson@example.com
Subject: Test message 2
To: xtest@example.com
<BLANKLINE>
Here is message 2
<BLANKLINE>

<BLANKLINE>
From: aperson@example.com
Subject: Test message 3
To: xtest@example.com
<BLANKLINE>
Here is message 3
<BLANKLINE>

<BLANKLINE>
From: aperson@example.com
Subject: Test message 4
To: xtest@example.com
<BLANKLINE>
Here is message 4
<BLANKLINE>

<BLANKLINE>
Subject: Digest Footer
<BLANKLINE>

Test mailing list
test@example.com
http://lists.example.com/listinfo/test@example.com
<BLANKLINE>
<BLANKLINE>

<BLANKLINE>
End of Test Digest, Vol 1, Issue 2

<BLANKLINE>

Digest delivery

A mailing list’s members can choose to receive normal delivery, plain text
digests, or MIME digests.

>>> len(get_queue_messages('virgin'))
0

>>> from mailman.interfaces.usermanager import IUserManager
>>> from zope.component import getUtility
>>> user_manager = getUtility(IUserManager)

>>> from mailman.interfaces.member import DeliveryMode, MemberRole
>>> def subscribe(email, mode):
... address = user_manager.create_address(email)
... member = mlist.subscribe(address, MemberRole.member)
... member.preferences.delivery_mode = mode
... return member

Two regular delivery members subscribe to the mailing list.

>>> member_1 = subscribe('uperson@example.com', DeliveryMode.regular)
>>> member_2 = subscribe('vperson@example.com', DeliveryMode.regular)

Two MIME digest members subscribe to the mailing list.

>>> member_3 = subscribe('wperson@example.com', DeliveryMode.mime_digests)
>>> member_4 = subscribe('xperson@example.com', DeliveryMode.mime_digests)

One RFC 1153 digest member subscribes to the mailing list.

>>> member_5 = subscribe(
... 'yperson@example.com', DeliveryMode.plaintext_digests)
>>> member_6 = subscribe(
... 'zperson@example.com', DeliveryMode.plaintext_digests)

When a digest gets sent, the appropriate recipient list is chosen.

>>> mlist.preferred_language = 'en'
>>> mlist.digest_size_threshold = 0.5
>>> fill_digest()
>>> runner.run()

The digests are sitting in the virgin queue. One of them is the MIME digest
and the other is the RFC 1153 digest.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
2

>>> mime, rfc1153 = mime_rfc1153(messages)

Only wperson and xperson get the MIME digests.

>>> sorted(mime.msgdata['recipients'])
['wperson@example.com', 'xperson@example.com']

Only yperson and zperson get the RFC 1153 digests.

>>> sorted(rfc1153.msgdata['recipients'])
['yperson@example.com', 'zperson@example.com']

Now uperson decides that they would like to start receiving digests too.

>>> member_1.preferences.delivery_mode = DeliveryMode.mime_digests
>>> fill_digest()
>>> runner.run()

>>> messages = get_queue_messages('virgin')
>>> len(messages)
2

>>> mime, rfc1153 = mime_rfc1153(messages)
>>> sorted(mime.msgdata['recipients'])
['uperson@example.com', 'wperson@example.com', 'xperson@example.com']

>>> sorted(rfc1153.msgdata['recipients'])
['yperson@example.com', 'zperson@example.com']

At this point, both uperson and wperson decide that they’d rather receive
regular deliveries instead of digests. uperson would like to get any last
digest that may be sent so that she doesn’t miss anything. wperson does care
as much and does not want to receive one last digest.

>>> mlist.send_one_last_digest_to(
... member_1.address, member_1.preferences.delivery_mode)

>>> member_1.preferences.delivery_mode = DeliveryMode.regular
>>> member_3.preferences.delivery_mode = DeliveryMode.regular

>>> fill_digest()
>>> runner.run()

>>> messages = get_queue_messages('virgin')
>>> mime, rfc1153 = mime_rfc1153(messages)
>>> sorted(mime.msgdata['recipients'])
['uperson@example.com', 'xperson@example.com']

>>> sorted(rfc1153.msgdata['recipients'])
['yperson@example.com', 'zperson@example.com']

Since uperson has received their last digest, they will not get any more of
them.

>>> fill_digest()
>>> runner.run()

>>> messages = get_queue_messages('virgin')
>>> len(messages)
2

>>> mime, rfc1153 = mime_rfc1153(messages)
>>> sorted(mime.msgdata['recipients'])
['xperson@example.com']

>>> sorted(rfc1153.msgdata['recipients'])
['yperson@example.com', 'zperson@example.com']

The incoming runner

This runner’s sole purpose in life is to decide the disposition of the
message. It can either be accepted for delivery, rejected (i.e. bounced),
held for moderator approval, or discarded.

The runner operates by processing chains on a message/metadata pair in the
context of a mailing list. Each mailing list has a default chain for messages
posted to the mailing list. This chain is processed with the message
eventually ending up in one of the four disposition states described above.

>>> mlist = create_list('test@example.com')
>>> print(mlist.posting_chain)
default-posting-chain

Sender addresses

The incoming runner ensures that the sender addresses on the message are
registered with the system. This is used for determining nonmember posting
privileges. The addresses will not be linked to a user and will be
unverified, so if the real user comes along later and claims the address, it
will be linked to their user account (and must be verified).

While configurable, the sender addresses by default are those named in the
From:, Sender:, and Reply-To: headers, as well as the envelope sender
(though we won’t worry about the latter).

>>> msg = message_from_string("""\
... From: zperson@example.com
... Reply-To: yperson@example.com
... Sender: xperson@example.com
... To: test@example.com
... Subject: This is spiced ham
... Message-ID: <bogus>
...
... """)

>>> from zope.component import getUtility
>>> from mailman.interfaces.usermanager import IUserManager
>>> user_manager = getUtility(IUserManager)
>>> print(user_manager.get_address('xperson@example.com'))
None
>>> print(user_manager.get_address('yperson@example.com'))
None
>>> print(user_manager.get_address('zperson@example.com'))
None

Inject the message into the incoming queue, similar to the way the upstream
mail server normally would.

>>> from mailman.app.inject import inject_message
>>> filebase = inject_message(mlist, msg)

The incoming runner runs until it is empty.

>>> from mailman.runners.incoming import IncomingRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> incoming = make_testable_runner(IncomingRunner, 'in')
>>> incoming.run()

And now the addresses are known to the system. As mentioned above, they are
not linked to a user and are unverified.

>>> for localpart in ('xperson', 'yperson', 'zperson'):
... email = '{0}@example.com'.format(localpart)
... address = user_manager.get_address(email)
... print('{0}; verified? {1}; user? {2}'.format(
... address.email,
... ('No' if address.verified_on is None else 'Yes'),
... user_manager.get_user(email)))
xperson@example.com; verified? No; user? None
yperson@example.com; verified? No; user? None
zperson@example.com; verified? No; user? None

Accepted messages

We have a message that is going to be sent to the mailing list. Once Anne is
a member of the mailing list, this message is so perfectly fine for posting
that it will be accepted and forward to the pipeline queue.

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist, 'Anne')
<Member: Anne Person <aperson@example.com> on test@example.com
 as MemberRole.member>

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... First post!
... """)

Inject the message into the incoming queue and run until the queue is empty.

>>> filebase = inject_message(mlist, msg)
>>> incoming.run()

There are no messages left in the incoming queue.

>>> get_queue_messages('in')
[]

Now the message is in the pipeline queue.

>>> messages = get_queue_messages('pipeline')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Message-ID-Hash: 4CMWUN6BHVCMHMDAOSJZ2Q72G5M32MWB
Date: ...
X-Mailman-Rule-Misses: approved; emergency; loop; member-moderation;
 administrivia; implicit-dest; max-recipients; max-size;
 news-moderation; no-subject; suspicious-header; nonmember-moderation
<BLANKLINE>
First post!
<BLANKLINE>
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
envsender : noreply@example.com
...

Held messages

The list moderator sets the emergency flag on the mailing list. The built-in
chain will now hold all posted messages, so nothing will show up in the
pipeline queue.

>>> from mailman.interfaces.chain import ChainEvent
>>> def on_chain(event):
... if isinstance(event, ChainEvent):
... print(event)
... print(event.chain)
... print('From: {0}\nTo: {1}\nMessage-ID: {2}'.format(
... event.msg['from'], event.msg['to'],
... event.msg['message-id']))

>>> mlist.emergency = True

>>> from mailman.testing.helpers import event_subscribers
>>> with event_subscribers(on_chain):
... filebase = inject_message(mlist, msg)
... incoming.run()
<mailman.interfaces.chain.HoldEvent ...>
<mailman.chains.hold.HoldChain ...>
From: aperson@example.com
To: test@example.com
Message-ID: <first>

>>> mlist.emergency = False

Discarded messages

Another possibility is that the message would get immediately discarded. The
built-in chain does not have such a disposition by default, so let’s craft a
new chain and set it as the mailing list’s start chain.

>>> from mailman.chains.base import Chain, Link
>>> from mailman.interfaces.chain import LinkAction
>>> def make_chain(name, target_chain):
... truth_rule = config.rules['truth']
... target_chain = config.chains[target_chain]
... test_chain = Chain(name, 'Testing {0}'.format(target_chain))
... config.chains[test_chain.name] = test_chain
... link = Link(truth_rule, LinkAction.jump, target_chain)
... test_chain.append_link(link)
... return test_chain

>>> test_chain = make_chain('always-discard', 'discard')
>>> mlist.posting_chain = test_chain.name

>>> msg.replace_header('message-id', '<second>')
>>> with event_subscribers(on_chain):
... filebase = inject_message(mlist, msg)
... incoming.run()
<mailman.interfaces.chain.DiscardEvent ...>
<mailman.chains.discard.DiscardChain ...>
From: aperson@example.com
To: test@example.com
Message-ID: <second>

>>> del config.chains[test_chain.name]

Rejected messages

Similar to discarded messages, a message can be rejected, or bounced back to
the original sender. Again, the built-in chain doesn’t support this so we’ll
just create a new chain that does.

>>> test_chain = make_chain('always-reject', 'reject')
>>> mlist.posting_chain = test_chain.name

>>> msg.replace_header('message-id', '<third>')
>>> with event_subscribers(on_chain):
... filebase = inject_message(mlist, msg)
... incoming.run()
<mailman.interfaces.chain.RejectEvent ...>
<mailman.chains.reject.RejectChain ...>
From: aperson@example.com
To: test@example.com
Message-ID: <third>

The rejection message is sitting in the virgin queue waiting to be delivered
to the original sender.

>>> messages = get_queue_messages('virgin')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
Subject: My first post
From: test-owner@example.com
To: aperson@example.com
...
<BLANKLINE>
--===============...
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
<BLANKLINE>
[No bounce details are available]
--===============...
Content-Type: message/rfc822
MIME-Version: 1.0
<BLANKLINE>
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <third>
Date: ...
<BLANKLINE>
First post!
<BLANKLINE>
--===============...

>>> del config.chains['always-reject']

LTMP server

Mailman can accept messages via LMTP (RFC 2033). Most modern mail servers
support LMTP local delivery, so this is a very portable way to connect Mailman
with your mail server.

Our LMTP server is fairly simple though; all it does is make sure that the
message is destined for a valid endpoint, e.g. mylist-join@example.com,
that the message bytes can be parsed into a message object, and that the
message has a Message-ID header.

Let’s start a testable LMTP runner.

>>> from mailman.testing import helpers
>>> master = helpers.TestableMaster()
>>> master.start('lmtp')

It also helps to have a nice LMTP client.

>>> lmtp = helpers.get_lmtp_client()
(220, b'... GNU Mailman LMTP runner 1.1')
>>> lmtp.lhlo('remote.example.org')
(250, ...)

Posting address

Once the mailing list is created, the posting address is valid, and messages
can be sent to the list.

>>> create_list('mylist@example.com')
<mailing list "mylist@example.com" at ...>

>>> transaction.commit()
>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist@example.com'], """\
... From: anne.person@example.com
... To: mylist@example.com
... Subject: An interesting message
... Message-ID: <badger>
...
... This is an interesting message.
... """)
{}

Since the message itself is valid, it gets parsed and lands in the incoming
queue.

>>> from mailman.testing.helpers import get_queue_messages
>>> messages = get_queue_messages('in')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
From: anne.person@example.com
To: mylist@example.com
Subject: An interesting message
Message-ID: <badger>
X-Message-ID-Hash: JYMZWSQ4IC2JPKK7ZUONRFRVC4ZYJGKJ
X-MailFrom: anne.person@example.com
<BLANKLINE>
This is an interesting message.
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
to_list : True
version : ...

Sub-addresses

The LMTP server understands each of the list’s sub-addreses, such as -join,
-leave, -request and so on. The message is accepted if posted to a valid
sub-address.

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-request@example.com'], """\
... From: anne.person@example.com
... To: mylist-request@example.com
... Subject: Help
... Message-ID: <dog>
...
... Please help me.
... """)
{}

Request subaddress

Depending on the subaddress, there is a message in the appropriate queue for
later processing. For example, all -request messages are put into the
command queue for processing.

>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> print(messages[0].msg.as_string())
From: anne.person@example.com
To: mylist-request@example.com
Subject: Help
Message-ID: <dog>
X-Message-ID-Hash: 4SKREUSPI62BHDMFBSOZ3BMXFETSQHNA
X-MailFrom: anne.person@example.com
<BLANKLINE>
Please help me.
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : request
version : ...

Bounce processor

A message to the -bounces address goes to the bounce processor.

>>> lmtp.sendmail(
... 'mail-daemon@example.com',
... ['mylist-bounces@example.com'], """\
... From: mail-daemon@example.com
... To: mylist-bounces@example.com
... Subject: A bounce
... Message-ID: <elephant>
...
... Bouncy bouncy.
... """)
{}
>>> messages = get_queue_messages('bounces')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : bounces
version : ...

Command processor

Confirmation messages go to the command processor…

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-confirm@example.com'], """\
... From: anne.person@example.com
... To: mylist-confirm@example.com
... Subject: A bounce
... Message-ID: <falcon>
...
... confirm 123
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : confirm
version : ...

…as do join messages…

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-join@example.com'], """\
... From: anne.person@example.com
... To: mylist-join@example.com
... Message-ID: <giraffe>
...
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : join
version : ...

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-subscribe@example.com'], """\
... From: anne.person@example.com
... To: mylist-subscribe@example.com
... Message-ID: <hippopotamus>
...
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : join
version : ...

…and leave messages.

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-leave@example.com'], """\
... From: anne.person@example.com
... To: mylist-leave@example.com
... Message-ID: <iguana>
...
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : leave
version : ...

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-unsubscribe@example.com'], """\
... From: anne.person@example.com
... To: mylist-unsubscribe@example.com
... Message-ID: <jackal>
...
... """)
{}
>>> messages = get_queue_messages('command')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
listid : mylist.example.com
original_size: ...
subaddress : leave
version : ...

Incoming processor

Messages to the -owner address also go to the incoming processor.

>>> lmtp.sendmail(
... 'anne.person@example.com',
... ['mylist-owner@example.com'], """\
... From: anne.person@example.com
... To: mylist-owner@example.com
... Message-ID: <kangaroo>
...
... """)
{}
>>> messages = get_queue_messages('in')
>>> len(messages)
1
>>> dump_msgdata(messages[0].msgdata)
_parsemsg : False
envsender : noreply@example.com
listid : mylist.example.com
original_size: ...
subaddress : owner
to_owner : True
version : ...

The NNTP runner

The NNTP runner gateways mailing list messages to an NNTP newsgroup.

>>> mlist = create_list('test@example.com')
>>> mlist.linked_newsgroup = 'comp.lang.python'

Get a handle on the NNTP server, which we’ll use later to verify the posted
messages.

>>> from mailman.testing.helpers import get_nntp_server
>>> nntpd = get_nntp_server(cleanups)

A message gets posted to the mailing list. It may contain some headers which
are prohibited by NNTP servers such as INN.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... NNTP-Posting-Host: news.example.com
... NNTP-Posting-Date: today
... X-Trace: blah blah
... X-Complaints-To: abuse@dom.ain
... Xref: blah blah
... Xref: blah blah
... Date-Received: yesterday
... Posted: tomorrow
... Posting-Version: 99.99
... Relay-Version: 88.88
... Received: blah blah
...
... A message
... """)

The message gets copied to the NNTP queue for preparation and posting.

>>> filebase = config.switchboards['nntp'].enqueue(
... msg, listid='test.example.com')
>>> from mailman.testing.helpers import make_testable_runner
>>> from mailman.runners.nntp import NNTPRunner
>>> runner = make_testable_runner(NNTPRunner, 'nntp')
>>> runner.run()

The message was successfully posted the NNTP server.

>>> print(nntpd.get_message().as_string())
From: aperson@example.com
To: test@example.com
Newsgroups: comp.lang.python
Message-ID: ...
Lines: 1
<BLANKLINE>
A message
<BLANKLINE>

Outgoing runner

The outgoing runner is the process that delivers messages to the directly
upstream SMTP server. It is this upstream SMTP server that performs final
delivery to the intended recipients.

Messages that appear in the outgoing queue are processed individually through
a delivery module, essentially a pluggable interface for determining how the
recipient set will be batched, whether messages will be personalized and
VERP’d, etc. The outgoing runner doesn’t itself support retrying but it can
move messages to the ‘retry queue’ for handling delivery failures.

>>> mlist = create_list('test@example.com')

>>> from mailman.testing.helpers import subscribe
>>> subscribe(mlist, 'Anne')
<Member: Anne Person <aperson@example.com>
 on test@example.com as MemberRole.member>

>>> subscribe(mlist, 'Bart')
<Member: Bart Person <bperson@example.com>
 on test@example.com as MemberRole.member>

>>> subscribe(mlist, 'Cris')
<Member: Cris Person <cperson@example.com>
 on test@example.com as MemberRole.member>

Normally, messages would show up in the outgoing queue after the message has
been processed by the rule set and pipeline. But we can simulate that here by
injecting a message directly into the outgoing queue. First though, we must
call the member-recipients handler so that the message metadata will be
populated with the list of addresses to deliver the message to.

>>> msg = message_from_string("""\
... From: aperson@example.com
... To: test@example.com
... Subject: My first post
... Message-ID: <first>
...
... First post!
... """)

>>> msgdata = {}
>>> handler = config.handlers['member-recipients']
>>> handler.process(mlist, msg, msgdata)
>>> outgoing_queue = config.switchboards['out']

The to-outgoing handler populates the message metadata with the
destination mailing list name. Simulate that here too.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... tolist=True,
... listid=mlist.list_id)

Running the outgoing runner processes the message, delivering it to the
upstream SMTP.

>>> from mailman.runners.outgoing import OutgoingRunner
>>> from mailman.testing.helpers import make_testable_runner
>>> outgoing = make_testable_runner(OutgoingRunner, 'out')
>>> outgoing.run()

Every recipient got the same copy of the message.

>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> print(messages[0].as_string())
From: aperson@example.com
To: test@example.com
Subject: My first post
Message-ID: <first>
X-Peer: ...
X-MailFrom: test-bounces@example.com
X-RcptTo: aperson@example.com, bperson@example.com, cperson@example.com

First post!

Personalization

Mailman supports sending individual messages to each recipient by
personalizing delivery. This increases the bandwidth between Mailman and the
upstream mail server, and between the upstream mail server and the remote
recipient mail servers. The benefit is that personalization provides for a
much better user experience, because the messages can be tailored for each
recipient.

>>> from mailman.interfaces.mailinglist import Personalization
>>> mlist.personalize = Personalization.individual
>>> transaction.commit()

Now when we send the message, our mail server will get three copies instead of
just one.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

Since we’ve done no other configuration, the only difference in the messages
is the recipient address. Specifically, the Sender header is the same for all
recipients.

>>> from operator import itemgetter
>>> def show_headers(messages):
... for message in sorted(messages, key=itemgetter('x-rcptto')):
... print(message['X-RcptTo'], message['X-MailFrom'])

>>> show_headers(messages)
aperson@example.com test-bounces@example.com
bperson@example.com test-bounces@example.com
cperson@example.com test-bounces@example.com

VERP

An even more interesting personalization opportunity arises if VERP is
enabled. Here, Mailman takes advantage of the fact that it’s sending
individualized messages anyway, so it also encodes the recipients address in
the Sender header.

Forcing VERP

A handler can force VERP by setting the verp key in the message metadata.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... verp=True,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

VERP personalized deliveries

The site administrator can enable VERP whenever messages are personalized.

>>> config.push('verp', """
... [mta]
... verp_personalized_deliveries: yes
... """)

Again, we get three individual messages, with VERP’d Sender headers.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

>>> config.pop('verp')
>>> mlist.personalize = Personalization.none
>>> transaction.commit()

VERP every once in a while

Perhaps personalization is too much of an overhead, but the list owners would
still like to occasionally get the benefits of VERP. The site administrator
can enable occasional VERPing of messages every so often, by setting a
delivery interval. Every N non-personalized deliveries turns on VERP for just
the next one.

>>> config.push('verp occasionally', """
... [mta]
... verp_delivery_interval: 3
... """)

Reset the list's post_id, which is used to calculate the intervals.
>>> mlist.post_id = 1
>>> transaction.commit()

The first message is sent to the list, and it is neither personalized nor
VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

Perform post-delivery bookkeeping.
>>> after = config.handlers['after-delivery']
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

The second message sent to the list is also not VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

The third message though is VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

The next one is back to bulk delivery.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

>>> config.pop('verp occasionally')

VERP every time

If the site administrator wants to enable VERP for every delivery, even if no
personalization is going on, they can set the interval to 1.

>>> config.push('always verp', """
... [mta]
... verp_delivery_interval: 1
... """)

Reset the list's post_id, which is used to calculate the intervals.
>>> mlist.post_id = 1
>>> transaction.commit()

The first message is VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

As is the second message.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

And the third message.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
3

>>> show_headers(messages)
aperson@example.com test-bounces+aperson=example.com@example.com
bperson@example.com test-bounces+bperson=example.com@example.com
cperson@example.com test-bounces+cperson=example.com@example.com

Perform post-delivery bookkeeping.
>>> after.process(mlist, msg, msgdata)
>>> transaction.commit()

>>> config.pop('always verp')

Never VERP

Similarly, the site administrator can disable occasional VERP’ing of
non-personalized messages by setting the interval to zero.

>>> config.push('never verp', """
... [mta]
... verp_delivery_interval: 0
... """)

Reset the list's post_id, which is used to calculate the intervals.
>>> mlist.post_id = 1
>>> transaction.commit()

Neither the first message…

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

…nor the second message is VERP’d.

>>> ignore = outgoing_queue.enqueue(
... msg, msgdata,
... listid=mlist.list_id)
>>> outgoing.run()
>>> messages = list(smtpd.messages)
>>> len(messages)
1

>>> show_headers(messages)
aperson@example.com, bperson@example.com, cperson@example.com
test-bounces@example.com

REST server

Mailman is controllable through an administrative REST [http://en.wikipedia.org/wiki/REST] HTTP server.

>>> from mailman.testing import helpers
>>> master = helpers.TestableMaster(helpers.wait_for_webservice)
>>> master.start('rest')

The RESTful server can be used to access basic version information.

>>> dump_json('http://localhost:9001/3.0/system')
http_etag: "..."
mailman_version: GNU Mailman 3.0... (...)
python_version: ...
self_link: http://localhost:9001/3.0/system/versions

Clean up

>>> master.stop()

List styles

List styles are a way to name and apply a template of attribute settings to
new mailing lists. Every style has a name, which must be unique.

Styles are generally only applied when a mailing list is created, although
there is no reason why styles can’t be applied to an existing mailing list.
However, when a style changes, the mailing lists using that style are not
automatically updated. Instead, think of styles as the initial set of
defaults for just about any mailing list attribute. In fact, application of a
style to a mailing list can really modify the mailing list in any way.

To start with, there are a few legacy styles.

>>> from zope.component import getUtility
>>> from mailman.interfaces.styles import IStyleManager
>>> manager = getUtility(IStyleManager)
>>> for style in manager.styles:
... print(style.name)
legacy-announce
legacy-default

When you create a mailing list through the low-level IListManager API, no
style is applied.

>>> from mailman.interfaces.listmanager import IListManager
>>> mlist = getUtility(IListManager).create('ant@example.com')
>>> print(mlist.display_name)
None

The legacy default style sets the list’s display name.

>>> manager.get('legacy-default').apply(mlist)
>>> print(mlist.display_name)
Ant

Registering styles

New styles must implement the IStyle interface.

>>> from zope.interface import implementer
>>> from mailman.interfaces.styles import IStyle
>>> @implementer(IStyle)
... class TestStyle:
... name = 'a-test-style'
... def apply(self, mailing_list):
... # Just does something very simple.
... mailing_list.display_name = 'TEST STYLE LIST'

You can register a new style with the style manager.

>>> manager.register(TestStyle())

All registered styles are returned in alphabetical order by style name.

>>> for style in manager.styles:
... print(style.name)
a-test-style
legacy-announce
legacy-default

You can also ask the style manager for the style, by name.

>>> test_style = manager.get('a-test-style')
>>> print(test_style.name)
a-test-style

Unregistering styles

You can unregister a style, making it unavailable in the future.

>>> manager.unregister(test_style)
>>> for style in manager.styles:
... print(style.name)
legacy-announce
legacy-default

Asking for a missing style returns None.

>>> print(manager.get('a-test-style'))
None

Apply styles at list creation

You can specify a style to apply when creating a list through the high-level
API. Let’s start by registering the test style.

>>> manager.register(test_style)

Now, when we use the high level API, we can ask for the style to be applied.

>>> from mailman.app.lifecycle import create_list
>>> mlist = create_list('bee@example.com', style_name=test_style.name)

The style has been applied.

>>> print(mlist.display_name)
TEST STYLE LIST

If no style name is provided when creating the list, the system default style
(taken from the configuration file) is applied.

>>> @implementer(IStyle)
... class AnotherStyle:
... name = 'another-style'
... def apply(self, mailing_list):
... # Just does something very simple.
... mailing_list.display_name = 'ANOTHER STYLE LIST'
>>> another_style = AnotherStyle()

We’ll set up the system default to apply this newly registered style if no
other style is explicitly given.

>>> from mailman.testing.helpers import configuration
>>> with configuration('styles', default=another_style.name):
... manager.register(another_style)
... mlist = create_list('cat@example.com')
>>> print(mlist.display_name)
ANOTHER STYLE LIST

 _images/graphviz-b54e97b7cc05d3c7d73dd5cde76bc3d50c2a353d.png
—— approved

no

emergency

no f—— HOLD

Toop

no DISCARD

member
moderated

no

administrivia

no action

max size

no [—— MODERATION

any

truth

_static/ajax-loader.gif

_images/graphviz-7a099b0aabf047c5d93a691ceee300089d7b2111.png
MIME
delete
cleanse headers
add headers

calculate
recipients

@.—

to archive

@—.

_images/graphviz-8086ca4c039b9d86e2d52147abf82814bee2918b.png
MIME
delete
cleanse headers
add headers

calculate
recipients

@.—

to archive

@—.

_images/graphviz-386c0479f9df56f397785800fa4f7c96ed80e580.png
—— approved

no

emergency

no f—— HOLD

Toop

no DISCARD

member
moderated

no

administrivia

no action

max size

no [—— MODERATION

any

truth

_images/graphviz-64e9c5ac4f1892aade00dcab52088a4f0421a7f7.png
SMTP

_images/graphviz-2e90079e006f8ead51d6e4f3ac71bfc4d9d417d2.png
SMTP

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Mailman - The GNU Mailing List Management System

 		
 Mailman - The GNU Mailing List Management System

 		
 Copyright

 		
 Spelling

 		
 History

 		
 Help

 		
 Bits and pieces

 		
 Getting started with GNU Mailman

 		
 Contact Us

 		
 Requirements

 		
 Documentation

 		
 Testing Mailman 3

 		
 Building for development

 		
 Running Mailman 3

 		
 Mailman Web UI

 		
 The Archiver

 		
 Release notes

 		
 Setting up your database

 		
 SQLite3

 		
 PostgreSQL

 		
 Database Migrations

 		
 Hooking up your mail server

 		
 Postfix

 		
 Mailman settings

 		
 Basic Postfix connections

 		
 Transport maps

 		
 Postfix documentation

 		
 Exim

 		
 Mailman settings

 		
 Exim4 configuration

 		
 Troubleshooting

 		
 Exim 4 documentation

 		
 Sendmail

 		
 Notes from the PyCon 2012 Mailman Sprint

 		
 Basic Messaging Handling Workflow

 		
 Message Filtering

 		
 Configuration

 		
 Shell Commands

 		
 User Model

 		
 List Styles

 		
 Set up Postorius in five minutes

 		
 GNU Mailman 3

 		
 mailman.client (the Python bindings for Mailman’s REST API)

 		
 Postorius

 		
 Start the development server

 		
 A note for MacOS X users (and possibly others running python 2.7)

 		
 Set up the archive ui in five minutes

 		
 Requirements

 		
 Get it running (under virtualenv):

 		
 Running hyperkitty

 		
 Developing Mailman

 		
 Object model

 		
 Process model

 		
 Rules and chains

 		
 Pipeline of handlers

 		
 Other bits and pieces

 		
 Email addresses

 		
 Creating addresses

 		
 Deleting addresses

 		
 Registration and verification

 		
 Case-preserved addresses

 		
 Automatic responder

 		
 Response dates

 		
 Bounces

 		
 Registration

 		
 Domains

 		
 Confirmation tokens

 		
 Languages

 		
 Adding languages

 		
 Other iterations

 		
 Clearing the known languages

 		
 The mailing list manager

 		
 Creating a mailing list

 		
 Deleting a mailing list

 		
 Retrieving a mailing list

 		
 Iterating over all mailing lists

 		
 Mailing lists

 		
 Rosters

 		
 Subscribing users

 		
 List memberships

 		
 Administrators

 		
 Members

 		
 Nonmembers

 		
 Finding members

 		
 All subscribers

 		
 Subscriber type

 		
 Moderation actions

 		
 Changing subscriptions

 		
 Events

 		
 The message store

 		
 Finding messages

 		
 Iterating over all messages

 		
 Deleting messages from the store

 		
 Mailing list addresses

 		
 Email confirmations

 		
 The pending database

 		
 Registration

 		
 Register an email address

 		
 Register a user

 		
 Moderator requests

 		
 Mailing list-centric

 		
 Holding requests

 		
 Getting requests

 		
 Additional data

 		
 Iterating over requests

 		
 Deleting requests

 		
 The user manager

 		
 Creating users

 		
 Deleting users

 		
 Finding users

 		
 Finding all members

 		
 Creating a new user

 		
 Users

 		
 User data

 		
 Basic user identification

 		
 Users addresses

 		
 Preferred address

 		
 Users and preferences

 		
 Subscriptions

 		
 Server owners

 		
 Alias Overview

 		
 The command runner

 		
 A command in the Subject

 		
 A command in the body

 		
 Implicit commands

 		
 Stopping command processing

 		
 Digesting

 		
 Digest delivery

 		
 The incoming runner

 		
 Sender addresses

 		
 Accepted messages

 		
 Held messages

 		
 Discarded messages

 		
 Rejected messages

 		
 LTMP server

 		
 Posting address

 		
 Sub-addresses

 		
 Request subaddress

 		
 Bounce processor

 		
 Command processor

 		
 Incoming processor

 		
 The NNTP runner

 		
 Outgoing runner

 		
 Personalization

 		
 VERP

 		
 Forcing VERP

 		
 VERP personalized deliveries

 		
 VERP every once in a while

 		
 VERP every time

 		
 Never VERP

 		
 REST server

 		
 Clean up

 		
 Moderation

 		
 Member moderation

 		
 Nonmembers

 		
 Administrivia

 		
 Non-administrivia

 		
 Pre-approved postings

 		
 No approval

 		
 The message is approved

 		
 Alternative headers

 		
 Removal of header

 		
 Using a pseudo-header

 		
 MIME multipart support

 		
 Stripping text/html parts

 		
 Emergency

 		
 Header matching

 		
 List-specific header matching

 		
 Implicit destination

 		
 Alias patterns

 		
 Bad aliases

 		
 Posting loops

 		
 Message size

 		
 Moderation

 		
 Member moderation

 		
 Nonmembers

 		
 Unregistered nonmembers

 		
 Cross-membership checks

 		
 Newsgroup moderation

 		
 No Subject header

 		
 Maximum number of recipients

 		
 Rules

 		
 All rules

 		
 Rule checks

 		
 Suspicious headers

 		
 Truth

 		
 Acknowledgment headers

 		
 Message acknowledgment

 		
 Non-member posts

 		
 No acknowledgment requested

 		
 Requested acknowledgments

 		
 After delivery

 		
 Archives

 		
 Avoid duplicates

 		
 Short circuiting

 		
 Suppressing the list copy

 		
 Cleansing headers

 		
 Anonymous lists

 		
 Cooking headers

 		
 Saving the original sender

 		
 Mailman version header

 		
 Precedence header

 		
 Personalization

 		
 Message decoration

 		
 Short circuiting

 		
 Simple decorations

 		
 Handling RFC 3676 ‘format=flowed’ parameters

 		
 Decorating mixed-charset messages

 		
 Decorating multipart messages

 		
 Decorating other content types

 		
 Digests

 		
 Short circuiting

 		
 Sending a digest

 		
 File recipients

 		
 Short circuiting

 		
 Existing file

 		
 Content filtering

 		
 Filtering the outer content type

 		
 Simple multipart filtering

 		
 Collapsing multipart/alternative messages

 		
 Conversion to plain text

 		
 Discarding empty parts

 		
 Passing MIME types

 		
 Calculating recipients

 		
 Regular delivery recipients

 		
 Digest recipients

 		
 Urgent messages

 		
 NNTP Gateway

 		
 List owner recipients

 		
 Reply-to munging

 		
 Reply to list

 		
 Explicit Reply-To

 		
 Automatic response handler

 		
 Basic automatic responding

 		
 Short circuiting

 		
 Available auto-responses

 		
 Grace periods

 		
 RFC 2919 and 2369 headers

 		
 Fewer headers

 		
 List-Post header

 		
 List-Id header

 		
 Archive headers

 		
 Subject prefixes

 		
 No Subject

 		
 Inserting a prefix

 		
 Internationalized headers

 		
 Prefix numbers

 		
 Message tagger

 		
 Scanning body lines

 		
 Scanning sub-parts

 		
 The outgoing handler

 		
 Addresses

 		
 Verifying

 		
 The user

 		
 User addresses

 		
 Memberships

 		
 Deleting

 		
 REST server

 		
 Credentials

 		
 Version information

 		
 Domains

 		
 Individual domains

 		
 Creating new domains

 		
 Deleting domains

 		
 Domain owners

 		
 REST API helpers

 		
 Resource paths

 		
 Etags

 		
 POST and PUT unpacking

 		
 Arrays

 		
 Mailing list configuration

 		
 Reading a configuration

 		
 Changing the full configuration

 		
 Changing a partial configuration

 		
 Sub-resources

 		
 Simple resources

 		
 Acceptable aliases

 		
 Mailing lists

 		
 Paginating over list records

 		
 Creating lists via the API

 		
 Apply a style at list creation time

 		
 Deleting lists via the API

 		
 Managing mailing list archivers

 		
 Membership

 		
 Subscribers

 		
 Paginating over member records

 		
 Owners and moderators

 		
 Finding members

 		
 Joining a mailing list

 		
 Leaving a mailing list

 		
 Changing delivery address

 		
 Post Moderation

 		
 Viewing the list of held messages

 		
 Disposing of held messages

 		
 Preferences

 		
 Changing preferences

 		
 Deleting preferences

 		
 Combined member preferences

 		
 System preferences

 		
 Queues

 		
 Subscription moderation

 		
 Viewing subscription requests

 		
 Viewing individual requests

 		
 Disposing of subscription requests

 		
 System configuration

 		
 Users

 		
 Paginating over user records

 		
 Creating users

 		
 Providing a display name

 		
 Providing passwords

 		
 Updating users

 		
 Deleting users via the API

 		
 User addresses

 		
 Verifying passwords

 		
 Server owners

 		
 Chains

 		
 The Discard chain

 		
 The Reject chain

 		
 The Hold Chain

 		
 The Accept chain

 		
 Run-time chains

 		
 Runners

 		
 Basic architecture

 		
 The switchboard

 		
 Enqueing and dequeing

 		
 Iterating over files

 		
 Recovering files

 		
 Clean up

 		
 Queue slices

 		
 Banning email addresses

 		
 Specific bans

 		
 Global bans

 		
 Regular expression bans

 		
 Adding and removing bans

 		
 Bounces

 		
 Bounces, or message rejection

 		
 Hooks

 		
 Pre-hook

 		
 Post-hook

 		
 Running both hooks

 		
 Application level list life cycle

 		
 Creating a list with owners

 		
 Deleting a list

 		
 Messages

 		
 User notifications

 		
 Application level moderation

 		
 Message moderation

 		
 Holding messages

 		
 Disposing of messages

 		
 Forwarding the message

 		
 Holding subscription requests

 		
 Disposing of membership change requests

 		
 Holding unsubscription requests

 		
 Notifications

 		
 Membership change requests

 		
 Membership changes

 		
 Welcome messages

 		
 Goodbye messages

 		
 Pipelines

 		
 Processing a message

 		
 Subscription services

 		
 Listing members

 		
 Finding members

 		
 Removing members

 		
 System versions

 		
 List styles

 		
 Registering styles

 		
 Unregistering styles

 		
 Apply styles at list creation

 		
 Archivers

 		
 Sending the message to the archiver

 		
 The Mail-Archive.com

 		
 MHonArc

 		
 SMTP authentication

 		
 Standard bulk delivery

 		
 Chunking recipients

 		
 Bulk delivery

 		
 Delivery headers

 		
 Delivery failures

 		
 MTA connections

 		
 Sessions per connection

 		
 No maximum

 		
 Development mode

 		
 Personalized decoration

 		
 Decorations

 		
 Decorate only once

 		
 Fully personalized delivery

 		
 No personalization

 		
 To header

 		
 Standard VERP delivery

 		
 No recipients

 		
 Individual copy

 		
 Mailman runner control

 		
 Generating aliases

 		
 Display configuration values

 		
 Starting and stopping Mailman

 		
 Set up

 		
 Starting

 		
 Stopping

 		
 Command line list creation

 		
 Setting the owner

 		
 Setting the language

 		
 Notifications

 		
 The ‘echo’ command

 		
 The ‘end’ command

 		
 Email command help

 		
 Importing list data

 		
 Getting information

 		
 Command line message injection

 		
 Standard input

 		
 Metadata

 		
 Errors

 		
 Command line list display

 		
 Names

 		
 Descriptions

 		
 Less verbosity

 		
 Specific domain

 		
 Advertised lists

 		
 Managing members

 		
 Listing members

 		
 Filtering on delivery mode

 		
 Filtering on delivery status

 		
 Adding members

 		
 Displaying members

 		
 Membership changes via email

 		
 Joining a mailing list

 		
 No address to join

 		
 Joining the sender

 		
 Joining a second list

 		
 Leaving a mailing list

 		
 Confirmations

 		
 Dumping queue files

 		
 Pretty printing

 		
 Command line list removal

 		
 Getting status

 		
 Unshunt

 		
 Return to the original queue

 		
 Discarding all shunted messages

 		
 Printing the version

 		
 Operating on mailing lists

 		
 Getting detailed help

 		
 Running a command

 		
 Multiple lists

 		
 Error handling

 		
 IPython

 		
 Mailman - The GNU Mailing List Management System

 		
 3.0.4 – “Show Don’t Tell”

 		
 3.0.3 – “Show Don’t Tell”

 		
 Bugs

 		
 3.0.2 – “Show Don’t Tell”

 		
 Bugs

 		
 Interfaces

 		
 REST

 		
 3.0.1 – “Show Don’t Tell”

 		
 Bugs

 		
 3.0.0 – “Show Don’t Tell”

 		
 Architecture

 		
 Bugs

 		
 Configuration

 		
 Documentation

 		
 REST

 		
 3.0 beta 5 – “Carve Away The Stone”

 		
 Bugs

 		
 Commands

 		
 Configuration

 		
 Database

 		
 Development

 		
 Interfaces

 		
 REST

 		
 3.0 beta 4 – “Time and Motion”

 		
 Development

 		
 REST

 		
 Commands

 		
 Configuration

 		
 Database

 		
 Bugs

 		
 3.0 beta 3 – “Here Again”

 		
 Compatibility

 		
 REST

 		
 Configuration

 		
 Database

 		
 Interfaces

 		
 Commands

 		
 Other

 		
 Bugs

 		
 3.0 beta 2 – “Freeze”

 		
 Architecture

 		
 Database

 		
 REST

 		
 Configuration

 		
 Documentation

 		
 Bug fixes

 		
 3.0 beta 1 – “The Twilight Zone”

 		
 Architecture

 		
 Database

 		
 REST

 		
 Interfaces

 		
 Commands

 		
 Bug fixes

 		
 3.0 alpha 8 – “Where’s My Thing?”

 		
 Architecture

 		
 REST

 		
 Commands

 		
 Documentation

 		
 Testing

 		
 Other bugs and changes

 		
 3.0 alpha 7 – “Mission”

 		
 Architecture

 		
 Configuration

 		
 Commands

 		
 REST

 		
 Build

 		
 Bugs fixed

 		
 3.0 alpha 6 – “Cut to the Chase”

 		
 Commands

 		
 Configuration

 		
 REST

 		
 Architecture

 		
 Miscellaneous

 		
 3.0 alpha 5 – “Distant Early Warning”

 		
 REST

 		
 Commands

 		
 Configuration

 		
 3.0 alpha 4 – “Vital Signs”

 		
 Commands

 		
 Architecture

 		
 Configuration

 		
 3.0 alpha 3 – “Working Man”

 		
 Configuration

 		
 Architecture

 		
 Other changes

 		
 Building and installation

 		
 3.0 alpha 2 – “Grand Designs”

 		
 Licensing

 		
 Bug fixes

 		
 Architecture

 		
 Other changes

 		
 Installation

 		
 3.0 alpha 1 – “Leave That Thing Alone”

 		
 User visible changes

 		
 Configuration

 		
 Architecture

 		
 Internationalization Big Changes

 		
 New Features

 		
 Command line scripts

 		
 Bug fixes and other patches

 		
 GNU Mailman Coding Style Guide

 		
 Python coding style guide for GNU Mailman

 		
 GNU Mailman Acknowledgments

 		
 Governance

 		
 Core Developers

 		
 Copyright Assignees

 		
 Special Thanks

_static/up.png

